
9/18/2018

1

Heaps, Heapsort, Priority Queues

So Far

Insertion Sort: O(n2) worst case

Linked List: O(n) search, some operations O(n2)

Heap: Data structure and associated algorithms,

Not garbage collection context

9/18/2018

2

Binary Tree

• A binary tree is a structure that can be

visualized as an upside-down tree where the

root is at the top and the leaves are at the

bottom

– Each node in the tree has at most two children

– If each level is completely filled-in then it is

called a complete binary tree

• We can create binary trees in several ways!

Sample Binary Tree

Parent/Child Relationship, Terminology

9/18/2018

3

Heap Structure

• An array of objects than can be viewed as a
complete binary tree such that:

– Each tree node corresponds to elements of the
array

– The tree is complete except possibly the lowest
level, filled from left to right

– The heap property for all nodes i in the tree
must be maintained except for the root:

• Parent node(i) i (could flip this if desired)

Heap Example

• Given array [22 13 10 8 7 6 2 4 3 5]

Note that the elements are not sorted, only max element at root of tree

Arrays are 1-based not 0-based

9/18/2018

4

Height of the Heap

• The height of a node in the tree is the number of

edges on the longest simple downward path from the

node to a leaf; e.g. height of node 6 is 0, height of

node 4 is 1, height of node 1 is 3.

• The height of the tree is the height from the root. As

in any complete binary tree of size n, this is lg n.

• Caveats: 2h nodes at level h. 2h+1-1 total nodes in a

complete binary tree.

Heap Attributes

• A heap represented as an array A has two

attributes:

– Length(A) – Size of the array

– HeapSize(A) - Size of the heap

• The property

Length(A) HeapSize(A) must be maintained. (why ?)

• The heap property is stated as

A[parent(I)] A[I]

9/18/2018

5

Computing Parents, Children

• The root of the tree is A[1].

• Formula to compute parents, children in an

array:

– Parent(I) = A[floor(I/2)]

– Left Child(I) = A[2I]

– Right Child(I) = A[2I+1]

Priority Queues

• Where might we want to use heaps? Consider the Priority
Queue problem
– Given a sequence of objects with varying degrees of priority, and we

want to deal with the highest-priority item first.

• Managing air traffic control
– Want to do most important tasks first.

– Jobs placed in queue with priority, controllers take off queue from top

• Scheduling jobs on a processor
– Critical applications need high priority

• Event-driven simulator with time of occurrence as key.
– Use min-heap, which keeps smallest element on top, get next

occurring event.

9/18/2018

6

Extracting Max

• To support these operations we need to extract the

maximum element from the heap:

 HEAP-EXTRACT-MAX(A)

 remove A[1]

 A[1]A[n] ; n is HeapSize(A), the length of the heap, not array

 nn-1 ; decrease size of heap

 Heapify(A,1,n) ; Remake heap to conform to heap properties

 Runtime: ()1 +Heapify time

Note: Arrays in this example are 1-based, not 0-based

Successive removals will result in items in reverse sorted order!

Heapify Routine

• Heapify maintains heap property by “floating” a value

down the heap that starts at I until it is in the right position.

 Heapify(A,I,n) ; Array A, heapify node I, heapsize is n

 ; Note that the left and right subtrees of I are also heaps

 ; Make I’s subtree be a heap.

 If 2In and A[2I]>A[I]

; see which is largest of current node and its children

 then largest2I

 else largest I

 If 2I+1n and A[2I+1]>A[largest]

 then largest2I+1

 If largest I

 then swap A[I] A[largest]

 Heapify(A,largest,n)

9/18/2018

7

Heapify Example

• Heapify(A,1,10).

A=[1 13 10 8 7 6 2 4 3 5]

1

2 3

4 5 6 7

8 9 10

4 3

8

5

7

13

6 2

10

1

Heapify Example

• Next is Heapify(A,2,10).

A=[13 1 10 8 7 6 2 4 3 5]

1

2 3

4 5 6 7

8 9 10

4 3

8

5

7

1

6 2

10

13

9/18/2018

8

Heapify Example

• Next is Heapify(A,4,10).

A=[13 8 10 1 7 6 2 4 3 5]

1

2 3

4 5 6 7

8 9 10

4 3

1

5

7

8

6 2

10

13

Heapify Example

• Next is Heapify(A,8,10).

A=[13 8 10 4 7 6 2 1 3 5]

• On this iteration we have reached a leaf and are finished.

1

2 3

4 5 6 7

8 9 10

1 3

4

5

7

8

6 2

10

13

9/18/2018

9

Heapify Runtime

• Later you will see recurrence relations, which recursively
specify how long the algorithm takes to run:

• We can always split the problem into at least 2/3 the size.

• Solving this yields ϴ(lgn) runtime in the worst case, O(1) in the best
case, for O(lgn) overall.

• Basically we start at the top and move toward the bottom; since the
tree is balanced we only make lg(n) swaps from the root to a leaf.

)1()
3

2
()(+

n
TnT

Building the Heap

• Given an array A, we want to build this array into a heap.

• Note: Leaves are already a heap! So start from the leaves
and build up from there.

Build-Heap(A,n)

for I = n downto 1 ; could we start at n/2?

do Heapify(A,I,n)

• Start with the leaves (last ½ of A) and consider each leaf as
a 1 element heap. Call heapify on the parents of the
leaves, and continue recursively to call Heapify, moving up
the tree to the root.

9/18/2018

10

Build-Heap Example

• Build-Heap(A,10)

A=[1 5 9 4 7 10 2 6 3 14]

1

2 3

4 5 6 7

8 9 10

6 3

4

14

7

5

10 2

9

1

Heapify(A,10,10) exits since this is a leaf.

Heapify(A,9,10) exits since this is a leaf.

Heapify(A,8,10) exits since this is a leaf.

Heapify(A,7,10) exits since this is a leaf.

Heapify(A,6,10) exits since this is a leaf.

Heapify(A,5,10) puts the largest of A[5]

and its children, A[10] into A[5]:

Build-Heap Example

A=[1 5 9 4 14 10 2 6 3 7]

Heapify(A,4,10)

1

2 3

4 5 6 7

8 9 10

6 3

4

7

14

5

10 2

9

1

9/18/2018

11

Build-Heap Example

• A=[1 5 9 6 14 10 2 4 3 7]

• Heapify(A,3,10):

1

2 3

4 5 6 7

8 9 10

4 3

6

7

14

5

10 2

9

1

Build-Heap Example

• A=[1 5 10 6 14 9 2 4 3 7]

• Heapify(A,2,10):

1

2 3

4 5 6 7

8 9 10

4 3

6

7

14

5

9 2

10

1

9/18/2018

12

Build-Heap Example

• A=[1 14 10 6 7 9 2 4 3 5]

• Heapify(A,1,10):

1

2 3

4 5 6 7

8 9 10

4 3

6

7

5

14

9 2

10

1
1

2 3

4 5 6 7

8 9 10

4 3

6

5

7

14

9 2

10

1

Heapify(A,2,10) Heapify(A,5,10)

Build-Heap Example

• Finished heap: A=[14 7 10 6 5 9 2 4 3 1]

Heapify(A,1,10) Heapify(A,2,10)

1

2 3

4 5 6 7

8 9 10

4 3

6

5

7

1

9 2

10

14

1

2 3

4 5 6 7

8 9 10

4 3

6

5

1

7

9 2

10

14

1

2 3

4 5 6 7

8 9 10

4 3

6

1

5

7

9 2

10

14

Heapify(A,5,10)

9/18/2018

13

Build-Heap Runtime

• Running Time

– We have a loop of n times, and each time call heapify
which runs in (lgn). This implies a bound of O(nlgn).
This is correct, but is a loose bound! We can do better.

– Key observation: Each time heapify is run within the
loop, it is not run on the entire tree. We run it on
subtrees, which have a lower height, so these subtrees
do not take lgn time to run. Since the tree has more
nodes on the leaf, most of the time the heaps are small
compared to the size of n.

Build-Heap Runtime

• Property: In an n-element heap there are at

most n/(2h) nodes at height h

– The leaves are h=1 and root at lgn, this is a

slight change from the previous definition

(leaves at height 0)

• The time required by Heapify when called

in Build-Heap on a node at height h is O(h);

h=lgn for the entire tree.

9/18/2018

14

Build-Heap Runtime

• Cost of Build-Heap is then:

=

=

−=

=

=

=

n

h
h

n

h
h

heightheap

h

h
n

OnT

hO
n

nT

TimeHeapifyhatnodesnT

lg

1

lg

1

_

1

2
)(

)(
2

)(

))(__(#)(

Build-Heap Runtime

• We know that:

• If x=1/2 then (1/2)n=1/(2n) so:

• Substitute this in our equation, which is safe
because the sum from 0 to infinity is LARGER
than the sum from 1 to lgn.

nx
x

x

n

n

=
−=

()1 2

0

=

=
−

=

0
2

2
)2/11(

2/1

2

1

n

h

h

)()2(
22

)(
1

lg

1

nOnO
h

nOh
n

OnT
h

h

n

h
h

=

=

==

9/18/2018

15

Heapsort

• Once we can build a heap and heapify,

sorting is easy… just remove max N times
 HeapSort(A,n)

 Build-Heap(A,n)

 for I n downto 2

 do Swap(A[1]A[I]

 Heapify(A,1,I-1)

Runtime is O(nlgn) since we do Heapify on n-1 elements, and

we do Heapify on the whole tree.

Note: In-place sort, required no extra storage variables unlike

Merge Sort, which used extra space in the recursion.

Heap Variations

• Heap could have min on top instead of max

• Heap could be k-ary tree instead of binary

• Priority Queue

– Desired Operations

• Insert(S,x) puts element x into set S

• Max(S,x) returns the largest element in set S

• Extract-Max(S) removes the largest element in set S

9/18/2018

16

Priority Queue implemented via

Heap

• Max(S,x)

– Just return root element. Takes O(1) time.

• Insert(S,x)

– Similar idea to heapify, put new element at end,

bubble up to proper place toward root

Heap-Insert(A,key)

 nn+1

 I n

 while I > 1 and A[i / 2] < key

 do A[I] A[i / 2]

 I i / 2

 A[I] key

Insert Example

• Insert new element “11” starting at new

node on bottom, I=8

1

2 3

4 5 6 7

11

6 5

7

9 2

10

14 Bubble up 1

2 3

4 5 6 7

6

11 5

7

9 2

10

14

9/18/2018

17

Insert Example

• Bubble up once more

1

2 3

4 5 6 7

6

7 5

11

9 2

10

14

Stop at this point, since

parent (index 1, value 14)

has a larger value

Runtime = O(lgn) since we

only move once up the tree

Extract Max

• To extract the max, copy the last element to

the root and heapify

 Heap-Extract-Max(A,n)

 maxA[1]

 A[1]A[n]

 nn-1

 Heapify(A,1,n)

 return max

O(lgn) time

Can implement priority

queue operations in

O(lgn) time, O(n) to build

