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Heaps, Heapsort, Priority Queues

So Far

Insertion Sort:  O(n2) worst case

Linked List:  O(n) search,  some operations O(n2)

Heap: Data structure and associated algorithms, 

Not garbage collection context
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Binary Tree

• A binary tree is a structure that can be 

visualized as an upside-down tree where the 

root is at the top and the leaves are at the 

bottom

– Each node in the tree has at most two children

– If each level is completely filled-in then it is 

called a complete binary tree

• We can create binary trees in several ways!

Sample Binary Tree

Parent/Child Relationship, Terminology
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Heap Structure

• An array of objects than can be viewed as a 
complete binary tree such that:

– Each tree node corresponds to elements of the 
array

– The tree is complete except possibly the lowest 
level, filled from left to right

– The heap property for all nodes i in the tree 
must be maintained except for the root:

• Parent node(i)  i (could flip this if desired)

Heap Example

• Given array [22 13 10 8 7 6 2 4 3 5] 

Note that the elements are not sorted, only max element at root of tree

Arrays are 1-based not 0-based
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Height of the Heap

• The height of a node in the tree is the number of 

edges on the longest simple downward path from the 

node to a leaf; e.g. height of node 6 is 0, height of 

node 4 is 1, height of node 1 is 3.  

• The height of the tree is the height from the root.  As 

in any complete binary tree of size n, this is lg n.

• Caveats:  2h nodes at level h. 2h+1-1 total nodes in a 

complete binary tree.

Heap Attributes

• A heap represented as an array A has two 

attributes: 

– Length(A) – Size of the array

– HeapSize(A) - Size of the heap

• The property 

Length(A)  HeapSize(A) must be maintained.    (why ?)

• The heap property is stated as 

A[parent(I)] A[I]
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Computing Parents, Children

• The root of the tree is A[1].

• Formula to compute parents, children in an 

array:

– Parent(I) = A[floor(I/2)]

– Left Child(I) = A[2I]

– Right Child(I) = A[2I+1]

Priority Queues

• Where might we want to use heaps?  Consider the Priority 
Queue problem
– Given a sequence of objects with varying degrees of priority, and we 

want to deal with the highest-priority item first.  

• Managing air traffic control
– Want to do most important tasks first.  

– Jobs placed in queue with priority, controllers take off queue from top

• Scheduling jobs on a processor
– Critical applications need high priority

• Event-driven simulator with time of occurrence as key.  
– Use min-heap, which keeps smallest element on top, get next 

occurring event.
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Extracting Max

• To support these operations we need to extract the 

maximum element from the heap:

 HEAP-EXTRACT-MAX(A) 

  remove A[1] 

  A[1]A[n]  ; n is HeapSize(A), the length of the heap, not array 

  nn-1  ; decrease size of heap 

  Heapify(A,1,n) ; Remake heap to conform to heap properties 

 

 Runtime: ( )1 +Heapify time 

Note: Arrays in this example are 1-based, not 0-based

Successive removals will result in items in reverse sorted order!

Heapify Routine

• Heapify maintains heap property by “floating” a value 

down the heap that starts at I until it is in the right position.

 Heapify(A,I,n)  ; Array A, heapify node I, heapsize is n 

  ; Note that the left and right subtrees of I are also heaps 

  ; Make I’s subtree be a heap. 

  If 2In and A[2I]>A[I]    

; see which is largest of current node and its children 

   then largest2I 

   else largest  I 

  If 2I+1n and A[2I+1]>A[largest] 

   then largest2I+1 

  If largest  I  

   then swap A[I]  A[largest] 

           Heapify(A,largest,n) 
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Heapify Example

• Heapify(A,1,10).   

A=[1 13 10 8 7 6 2 4 3 5] 

1

2 3

4 5 6 7

8 9 10

4 3

8

5

7

13

6 2

10

1

Heapify Example

• Next is Heapify(A,2,10).  

A=[13 1 10 8 7 6 2 4 3 5]

1

2 3

4 5 6 7

8 9 10

4 3

8

5

7

1

6 2

10

13
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Heapify Example

• Next is Heapify(A,4,10).    

A=[13 8 10 1 7 6 2 4 3 5]

1

2 3

4 5 6 7

8 9 10

4 3

1

5

7

8

6 2

10

13

Heapify Example

• Next is Heapify(A,8,10).  

A=[13 8 10 4 7 6 2 1 3 5]

• On this iteration we have reached a leaf and are finished.  

1

2 3

4 5 6 7

8 9 10

1 3

4

5

7

8

6 2

10

13



9/18/2018

9

Heapify Runtime

• Later you will see recurrence relations, which recursively 
specify how long the algorithm takes to run:

• We can always split the problem into at least 2/3 the size.  

• Solving this yields ϴ(lgn) runtime in the worst case, O(1) in the best 
case, for O(lgn) overall.  

• Basically we start at the top and move toward the bottom; since the
tree is balanced we only make lg(n) swaps from the root to a leaf.

)1()
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2
()( +

n
TnT

Building the Heap

• Given an array A, we want to build this array into a heap.  

• Note: Leaves are already a  heap!  So start from the leaves 
and build up from there.

Build-Heap(A,n)

for I = n downto 1 ; could we start at n/2?

do Heapify(A,I,n)

• Start with the leaves (last ½ of A) and consider each leaf as 
a 1 element heap.  Call heapify on the parents of the 
leaves, and continue recursively to call Heapify, moving up 
the tree to the root.



9/18/2018

10

Build-Heap Example

• Build-Heap(A,10)

A=[1 5 9 4 7 10 2 6 3 14] 

1

2 3

4 5 6 7

8 9 10

6 3

4

14

7

5

10 2

9

1

Heapify(A,10,10) exits since this is a leaf.

Heapify(A,9,10) exits since this is a leaf.

Heapify(A,8,10) exits since this is a leaf.

Heapify(A,7,10) exits since this is a leaf.

Heapify(A,6,10) exits since this is a leaf.

Heapify(A,5,10) puts the largest of A[5] 

and its children, A[10] into A[5]:

Build-Heap Example

A=[1 5 9 4 14 10 2 6 3 7]

Heapify(A,4,10)

1

2 3

4 5 6 7

8 9 10

6 3

4

7

14

5

10 2

9

1
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Build-Heap Example

• A=[1 5 9 6 14 10 2 4 3 7]

• Heapify(A,3,10):

1

2 3

4 5 6 7

8 9 10

4 3

6

7

14

5

10 2

9

1

Build-Heap Example

• A=[1 5 10 6 14 9 2 4 3 7]

• Heapify(A,2,10):    

1

2 3

4 5 6 7

8 9 10

4 3

6

7

14

5

9 2

10

1
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Build-Heap Example

• A=[1 14 10 6 7 9 2 4 3 5] 

• Heapify(A,1,10):    

1

2 3

4 5 6 7

8 9 10

4 3

6

7

5

14

9 2

10

1
1

2 3

4 5 6 7

8 9 10

4 3

6

5

7

14

9 2

10

1

Heapify(A,2,10) Heapify(A,5,10)

Build-Heap Example

• Finished heap:  A=[14 7 10 6 5 9 2 4 3 1]

Heapify(A,1,10) Heapify(A,2,10)

1

2 3

4 5 6 7

8 9 10

4 3

6

5

7

1

9 2

10

14

1

2 3

4 5 6 7

8 9 10

4 3

6

5

1

7

9 2

10

14

1

2 3

4 5 6 7

8 9 10

4 3

6

1

5

7

9 2

10

14

Heapify(A,5,10)
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Build-Heap Runtime

• Running Time

– We have a loop of n times, and each time call heapify 
which runs in (lgn).  This implies a bound of O(nlgn).   
This is correct, but is a loose bound!  We can do better.  

– Key observation: Each time heapify is run within the 
loop, it is not run on the entire tree.  We run it on 
subtrees, which have a lower height, so these subtrees 
do not take lgn time to run.  Since the tree has more 
nodes on the leaf, most of the time the heaps are small 
compared to the size of n.

Build-Heap Runtime

• Property: In an n-element heap there are at 

most n/(2h) nodes at height h

– The leaves are h=1 and root at lgn, this is a 

slight change from the previous definition 

(leaves at height 0)

• The time required by Heapify when called 

in Build-Heap on a node at height h is O(h); 

h=lgn for the entire tree.
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Build-Heap Runtime

• Cost of Build-Heap is then:
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Build-Heap Runtime

• We know that:

• If x=1/2 then (1/2)n=1/(2n) so: 

• Substitute this in our equation, which is safe 
because the sum from 0 to infinity is LARGER 
than the sum from 1 to lgn. 

nx
x

x

n

n

=
−=




( )1 2

0




=

=
−

=








0
2

2
)2/11(

2/1

2

1

n

h

h

)()2(
22

)(
1

lg

1

nOnO
h

nOh
n

OnT
h

h

n

h
h

=
















= 



==



9/18/2018

15

Heapsort

• Once we can build a heap and heapify, 

sorting is easy… just remove max N times
 HeapSort(A,n) 

  Build-Heap(A,n) 

  for I n downto 2 

   do Swap(A[1]A[I] 

    Heapify(A,1,I-1) 

Runtime is O(nlgn) since we do Heapify on n-1 elements, and 

we do Heapify on the whole tree.

Note: In-place sort, required no extra storage variables unlike 

Merge Sort, which used extra space in the recursion.

Heap Variations

• Heap could have min on top instead of max

• Heap could be k-ary tree instead of binary

• Priority Queue

– Desired Operations

• Insert(S,x) puts element x into set S

• Max(S,x) returns the largest element in set S

• Extract-Max(S) removes the largest element in set S
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Priority Queue implemented via 

Heap

• Max(S,x) 

– Just return root element.  Takes O(1) time.

• Insert(S,x)

– Similar idea to heapify, put new element at end, 

bubble up to proper place toward root

Heap-Insert(A,key) 

 nn+1 

  I   n 

 while I > 1 and A[  i / 2 ] < key 

   do A[I] A[  i / 2 ] 

    I    i / 2  

  A[I] key 

Insert Example

• Insert new element “11” starting at new 

node on bottom, I=8 

1

2 3

4 5 6 7

11

6 5

7

9 2

10

14 Bubble up 1

2 3

4 5 6 7

6

11 5

7

9 2

10

14
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Insert Example

• Bubble up once more

1

2 3

4 5 6 7

6

7 5

11

9 2

10

14

Stop at this point, since 

parent (index 1, value 14) 

has a larger value

Runtime = O(lgn) since we 

only move once up the tree 

Extract Max

• To extract the max, copy the last element to 

the root and heapify

 Heap-Extract-Max(A,n) 

  maxA[1] 

  A[1]A[n] 

  nn-1 

  Heapify(A,1,n) 

  return max 

O(lgn) time

Can implement priority

queue operations in

O(lgn) time, O(n) to build


