
1

Maximum Flow

Flow Graph

• A common scenario is to use a graph to
represent a “flow network” and use it to answer
questions about material flows

• Flow is the rate that material moves through the
network

• Each directed edge is a conduit for the material
with some stated capacity

• Vertices are connection points but do not collect
material
– Flow into a vertex must equal the flow leaving the

vertex, flow conservation

2

Sample Networks

communication

Network

telephone exchanges,

computers, satellites

Nodes Arcs

cables, fiber optics,

microwave relays

Flow

voice, video,

packets

circuits
gates, registers,

processors
wires current

mechanical joints rods, beams, springs heat, energy

hydraulic
reservoirs, pumping

stations, lakes
pipelines fluid, oil

financial stocks, companies transactions money

transportation
airports, rail yards,

street intersections

highways, railbeds,

airway routes

freight,

vehicles,

passengers

chemical sites bonds energy

Flow Concepts

• Source vertex s

– where material is produced

• Sink vertex t

– where material is consumed

• For all other vertices – what goes in must go out

– Flow conservation

• Goal: determine maximum rate of material

flow from source to sink

3

Formal Max Flow Problem

– Graph G=(V,E) – a flow network

• Directed, each edge has capacity c(u,v) 0

• Two special vertices: source s, and sink t

• For any other vertex v, there is a path s→…→v→…→t

– Flow – a function f : V V → R

• Capacity constraint: For all u, v V: f(u,v) c(u,v)

• Skew symmetry: For all u, v V: f(u,v) = –f(v,u)

• Flow conservation: For all u V – {s, t}:

, or(,) (,) 0

(,) (,) 0

v V

v V

f u v f u V

f v u f V u

= =

= =

2/5

2/15

5/14

4/19

3/3

s t0/9

a

b

Cancellation of flows

• We would like to avoid two positive flows

in opposite directions between the same

pair of vertices

– Such flows cancel (maybe partially) each

other due to skew symmetry

5/5

2/15

5/14

5/19

2/3

s t2/9

a

b

3/5

2/15

5/14

5/19

2/3

s t0/9

a

b

4

Max Flow

• We want to find a flow of maximum value

from the source to the sink

– Denoted by |f|

Lucky Puck Distribution Network
Max Flow, |f| = 19

Or is it?

Best we can do?

Ford-Fulkerson method
• Contains several algorithms:

– Residual networks

– Augmenting paths

• Find a path p from s to t (augmenting path), such that there is

some value x > 0, and for each edge (u,v) in p we can add x

units of flow

– f(u,v) + x c(u,v)

8/13

8/11

5/52/4

10/15

10

6/14

13/19

3/3

s t9

a b

c d

Augmenting Path?

5

Residual Network

• To find augmenting path we can find any path in the

residual network:

– Residual capacities: cf(u,v) = c(u,v) – f(u,v)

• i.e. the actual capacity minus the net flow from u to v

• Net flow may be negative

– Residual network: Gf =(V,Ef), where

Ef = {(u,v) V V : cf(u,v) > 0}

– Observation – edges in Ef are either edges in E or their

reversals: |Ef| 2|E|

0/14

5/15

a b

19

10

a b

Sub-graph

With

c(u,v) and

f(u,v)

Residual

Sub-Graph

c

5/6

c

1

5

Residual Graph
• Compute the residual graph of the graph with the

following flow:
8/13

8/11

5/52/4

10/15

10

6/14

13/19

3/3

s t9

a b

c d

6

Residual Capacity and Augmenting

Path

• Finding an Augmenting Path

– Find a path from s to t in the residual graph

– The residual capacity of a path p in Gf:

cf(p) = min{cf(u,v): (u,v) is in p}
• i.e. find the minimum capacity along p

– Doing augmentation: for all (u,v) in p, we just
add this cf(p) to f(u,v) (and subtract it from
f(v,u))

– Resulting flow is a valid flow with a larger
value.

Residual network and augmenting path

7

The Ford-Fulkerson method

Ford-Fulkerson(G,s,t)

1 for each edge (u,v) in G.E do

2 f(u,v) f(v,u) 0

3 while there exists a path p from s to t in residual

network Gf do

4 cf = min{cf(u,v): (u,v) is in p}

5 for each edge (u,v) in p do

6 f(u,v) f(u,v) + cf
7 f(v,u) -f(u,v)

8 return f

The algorithms based on this method differ in how they choose p in step 3.

If chosen poorly the algorithm might not terminate.

Execution of Ford-Fulkerson (1)

Left Side = Residual Graph Right Side = Augmented Flow

8

Execution of Ford-Fulkerson (2)

Left Side = Residual Graph Right Side = Augmented Flow

Cuts
• Does the method find the minimum flow?

– Yes, if we get to the point where the residual graph has no path from s
to t

– A cut is a partition of V into S and T = V – S, such that s S and t T

– The net flow (f(S,T)) through the cut is the sum of flows f(u,v), where s
 S and t T

• Includes negative flows back from T to S

– The capacity (c(S,T)) of the cut is the sum of capacities c(u,v), where s
 S and t T

• The sum of positive capacities

– Minimum cut – a cut with the smallest capacity of all cuts.

|f|= f(S,T) i.e. the value of a max flow is equal to the capacity of a min
cut.

8/13

8/11

5/52/4

10/15

10

6/14

13/19

3/3

s t9

a b

c d

Cut capacity = 24 Min Cut capacity = 21

9

Max Flow / Min Cut Theorem

1. Since |f| c(S,T) for all cuts of (S,T) then if |f| =
c(S,T) then c(S,T) must be the min cut of G

2. This implies that f is a maximum flow of G

3. This implies that the residual network Gf
contains no augmenting paths.

• If there were augmenting paths this would contradict
that we found the maximum flow of G

• 1→2→3→1 … and from 2→3 we have that
the Ford Fulkerson method finds the maximum
flow if the residual graph has no augmenting
paths.

Worst Case Running Time

• Assuming integer flow

• Each augmentation increases the value of the flow by

some positive amount.

• Augmentation can be done in O(E).

• Total worst-case running time O(E|f*|), where f* is the

max-flow found by the algorithm.

• Example of worst case:

Augmenting path of 1 Resulting Residual Network Resulting Residual Network

10

Edmonds Karp

• Take shortest path (in terms of number of
edges) as an augmenting path –
Edmonds-Karp algorithm

– How do we find such a shortest path?

– Running time O(VE2), because the number of
augmentations is O(VE)

– Skipping the proof here

– Even better method: push-relabel, O(V2E)
runtime

Multiple Sources or Sinks

• What if you have a problem with more than one source

and more than one sink?

• Modify the graph to create a single supersource and

supersink

13

11

54

15

10

14

13

3

s t9

a b

c d

13

11

54

15

10

14

13

3

x y9

e f

g h

4

13

11

54

15

10

14

13

3

9

a b

c d

13

11

54

15

10

14

13

3

9

e f

g h

4s

i

j

k

l

t

11

Application – Bipartite Matching

• Example – given a community with n men and m
women

• Assume we have a way to determine which
couples (man/woman) are compatible for
marriage
– E.g. (Joe, Susan) or (Fred, Susan) but not (Frank,

Susan)

• Problem: Maximize the number of marriages
– No polygamy allowed

– Can solve this problem by creating a flow network out
of a bipartite graph

Bipartite Graph

• A bipartite graph is an undirected graph G=(V,E) in

which V can be partitioned into two sets V1 and V2 such

that (u,v) E implies either u V1 and v V12 or vice

versa.

• That is, all edges go between the two sets V1 and V2 and

not within V1 and V2.

12

Model for Matching Problem

• Men on leftmost set, women on rightmost

set, edges if they are compatible

A

B

C

D

X

Y

Z

Men Women

A

B

C

D

X

Y

Z

A matching

A

B

C

D

X

Y

Z

Optimal matching

Solution Using Max Flow

• Add a supersouce, supersink, make each

undirected edge directed with a flow of 1

A

B

C

D

X

Y

Z

A

B

C

D

X

Y

Z

s
t

Since the input is 1, flow conservation prevents multiple matchings

