Study Questions for Midterm 1, Data Structures \& Algorithms

You are welcome to discuss questions and solutions with your classmates or others. I have no solutions to provide but can answer questions you may have.

1. Arrange the following expressions by growth rate from slowest to fastest.

$$
\begin{aligned}
& 4 n^{2} \\
& \log _{3} n \\
& n! \\
& 3^{n} \\
& 20 n \\
& 2 \\
& \log _{2} n \\
& n^{2 / 3}
\end{aligned}
$$

2. Using the definition of Big-O and Ω, find the upper and lower bounds for the following expressions.
a. $37 n$
b. $23 n^{3}+88$
c. $2 n \operatorname{lgn}+10000 n$
d. $0.5^{*} 2^{n}+10000 n^{6}$
3. Determine the Big-O runtime for this recursive function
```
int foo(int n)
{
    if (n > 1)
    {
        return n + foo(n-1);
    }
    return 1;
}
```

4. Given the doubly linked list below, where head points to the node with 10 and tail points to the node with 50 :

a. If p is a pointer to the node with the value of 15 , give the code that deletes that node from the doubly-linked list.
b. If p is a pointer to the node with the value of 10 and q is a pointer to the node with 25 , give the code that swaps those two nodes in the linked list by swapping next/previous pointers (not just copying the value from one node to the other).
5. Write a recursive function that takes as input a pointer to the root node of a binary tree (pseudocode is fine). The function should return the height of the tree (the height of an empty tree is 0 , the height of a tree with one node is 1 , etc.)
6. Write a recursive function that takes as input a pointer to the root node of a binary tree (pseudocode is fine). The function should return the number of total leaves in the tree.
7. Given the binary search tree below:

a. List the order the nodes are visited if we use the pre-order traversal algorithm
b. Show the resulting tree if we insert the values 45,41 , and 35
c. Show (using the original tree) how the tree would be reorganized if we delete the node with value 7
d. Given this tree, show how the tree would be reorganized if we delete the root node.

8. Describe a set of characters and frequencies for which the worst case scenario of the Huffman compression scheme that results in the worst/least amount of compression.
