
Group Exercise #5

Due 11:59PM, Monday April 26

Instructions:
1) Find which group you are in from the following list (it is re-randomized since the last group).

a. Group 1 – Talha, Cale, ANDY

b. Group 2 – Tuva, Eddie, Oksana

c. Group 3 - Alejandra, Kevin, Kyleigh

d. Group 4 – David S, Malachi, Hayden

e. Group 5 – Garrett, David M, Jonathan

f. Group 6 – Alora, Jacobo, Luke

g. Group 7 – Aiden, Megan, Liam

h. Group 8 – Keith, Jonah, Nicole

i. Group 9 – Nemed, Marshall

2) Go to the discord server, introduce yourself in the channel for your group, and work out among

your group who will work on which questions. Note that all channels are public.

3) Before the deadline discuss answers for each question in the group until there is consensus.

4) Create a PDF or Word Document with written/typed answers (you do not need to make a video

unless you want to) and upload to your channel.

Questions

1. Given the following graph, find a minimum spanning tree using either Kruskal or Prim’s

algorithm, showing the steps along the way to generate the final MST.

2. For each of the following algorithms identify a recurrence relation or find the runtime in

Theta/Big-O notation if there is no recurrence relation. Don’t solve the recurrence relations.

a. Binary Search

int binary_search(int A[], int key, int imin, int imax)

{

 if (imax < imin):

 return KEY_NOT_FOUND;

 else

 {

 int imid = (imin + imax) / 2;

 if (A[imid] > key):

 return binary_search(A, key, imin, imid-1);

 else if (A[imid] < key):

 return binary_search(A, key, imid+1, imax);

 else

 return imid;

 }

}

b. Gaussian Elimination

for (int i = 0; i < N-1; i++)

 {

 for (int j = i; j < N; j++)

 {

 double ratio = A[j][i]/A[i][i];

 for (int k = i; k < N; k++)

{

 A[j][k] -= (ratio*A[i][k]);

 b[j] -= (ratio*b[i]);

 }

 }

 }

c. Made-up algorithm

int arrayOdd(int A[], int n)

{

 if(n < 1)

 return 0;

 else

 return A[n-1]%2 + arrayOdd(A, n-1);

}

3. Solve this recurrence relation using the iterative substitution technique.

T(n) =T(n/2) + n

