
1

Introduction to Functional Programming in Java 8

Java 8 is the current version of Java that was released in March, 2014. While

there are many new features in Java 8, the core addition is functional programming

with lambda expressions. In this section we describe the benefits of functional

programming and give a few examples of the programming style. Most of the features

in Java 8 are more appropriate for an advanced Java text but the concepts apply to

material we have discussed, particularly when we are working with collections.

 A lambda expression is a nameless function. In functional programming, a

function is the same thing as a method. Related concepts include closures, anonymous

functions, and function literals. As a nameless function, a lambda expression is

essentially a little chunk of code that you can pass around as data but have it treated

like a function with parameters. Lambda expressions provide a neat way to implement

a class that normally has only one function and to make it easy to modify methods on

the spot rather than go through the work of defining a method to perform a specialized

task. Additionally, lambda expressions help Java parallelize itself to run more

efficiently on multi-core or parallel machines. For example, normally we will process

elements in an ArrayList by creating a for loop that accesses each element one by

one. This is considered external access to the loop. In contrast, with lambda

expressions we can internally iterate through the ArrayList by providing a function

that tells Java how to process each element. The Java Virtual Machine can then

parallelize the operating by farming computation on the elements to different

processors.

 The format to define a lambda expression looks like this:

parameters -> body

The arrow separates the parameters from the body. In many cases the body is short

and just a single line of code. If it were longer, than a traditional method may make

more sense. Here is a lambda expression with a function that takes no parameters and

returns the number 68:

() -> { return 68; }

Here is a lambda expression that returns the sum of two integers x and y:

(int x, int y) -> { return (x+y); }

In many cases Java can infer the type of the parameters, in which case we can leave

the data type off. We can also simply provide an expression on the right side and it

automatically becomes the return value without requiring the keyword return. The

following is equivalent to the previous example:

(x, y) -> x+y

As an example to motivate the use of lambda functions, consider the case

where we want a class to implement the Runnable interface.The Runnable interface

has only one method to implement, the run() method. If we are using threads then

we’d invoke the start()method but in this case we can directly invoke the run()

method. The following code illustrates the traditional way we would create an object

that implements Runnable:

public class OldStyleRunnable implements

 Runnable

{

 public void run()

 {

System.out.println

 ("Running in a class!");

 }

}

public class NotLambda1

{

 public static void main(String[] args)

 {

 OldStyleRunnable r0 = new

 OldStyleRunnable();

 r0.run(); // Not running in a thread

 }

}

Sample Dialogue:

 Running in a class!

This is fine for one object, but what if we wanted multiple objects, and we

wanted different code in the run() method for each? Then we would have to

explicitly create a separate class for each object. An alternative is to use an

anonymous class in which we declare and instantiate the class in a single statement:

public class NotLambda2

{

 public static void main(String[] args)

 {

 // Anonymous class that overrides

 // the run() method

 Runnable r = new Runnable()

 {

 public void run(){

 System.out.println

 ("In an anonymous class!");

 }

 };

 r.run();

 }

}

Sample Dialogue:

 In an anonymous class!

This is an improvement over the first version because we can now create

unique Runnable objects with the run() method of our choice without the need to

 3

assign a name to derived Runnable class. However, lambda functions allow us to

assign a function to a Runnable object in a single line:

public class LambdaRunnable

{

 public static void main(String[] args)

 {

 Runnable r =

 () -> System.out.println

 ("In a lambda expression!");

 r.run();

 }

}

Sample Dialogue:

 In a lambda expression!

The lambda format is the simplest of all and lets us directly insert the method

where needed. The same concept applies to implementing an actionListener for a

GUI component. For example, instead of this old style code that uses an anonymous

class:

button.addActionListener(new ActionListener()

{

 public void actionPerformed(ActionEvent e)

 {

 System.out.println("You clicked me!");

 }

});

we can now use the much shorter and easier to read:

button.addActionListener

 (e -> System.out.println

 ("You clicked me!"));

Java’s lambda expressions are particularly useful when applied to collections.

Three common operations that we typically perform are to filter, map, or reduce the

collection. In this section we give a short example of each.

 Let’s start with the concept of a filter. Consider the following code, which

creates a list of doubles:

ArrayList<Double> nums = new ArrayList<>();

nums.add(3.5);

nums.add(56.3);

nums.add(81.1);

nums.add(4.8);

If we only want to output the values in the array that are over 50 then in traditional

Java-style (external processing) we would make a loop with an if statement:

for (int i = 0; i < nums.size(); i++)

 if (nums.get(i) > 50)

 System.out.println(nums.get(i));

Using Java 8’s lambda expressions we can do the same thing by creating a stream of

the elements in the ArrayList and then filtering them. This is accomplished through

a sequence of function calls:

nums.stream().filter((Double val) -> val > 50).forEach((Double

val) -> System.out.println(val));

For readability purposes it is common to put each function call on a separate line:

nums.stream()

 .filter((Double val) -> val > 50)

 .forEach((Double val) -> System.out.println(val));

The stream() method creates a stream which generates a list that we can iterate once.

Not to be confused with data streams, this new type of stream can be accessed in

parallel or sequentially. In our case we are only using sequential streams. Once the

stream is generated then we invoke filter and the forEach. Inside filter we

specify a lambda expression. Each element in the ArrayList is filtered according to

the lambda expression. In this case, the variable val is an element in the ArrayList

that is being processed and the function says to filter only those elements whose value

is greater than 50. Next, the forEach iterates through the filtered elements and outputs

each one via println. In our example, this would output 56.3 and 81.1.

 We can simplify the code a little bit more by leaving out the data type because

Java is able to infer it from the context. The resulting code becomes:

nums.stream()

 .filter(val -> val > 50)

 .forEach(val -> System.out.println(val));

The new format is quite different than the traditional method but the style is more

concise, can be more easily parallelized, and in general will require less code than the

old technique.

 Next, consider the concept of a map. A map takes elements in the collection

and transforms them in some way. First, consider a simple mapping where we would

like to add 100 to every element in the ArrayList. We can do so as follows:

 nums.stream()

 .map(val -> (val + 100))

 .forEach(val -> System.out.println(val));

This will output 100 added to each value (i.e. 103.5, 156.3, 181.1, 104.8). Note that

each function is invoked in sequence. If we add our previous filter to the beginning

then we would only get 156.3 and 181.1:

 nums.stream()

 .filter(val -> val > 50)

 .map(val -> (val + 100))

 .forEach(val -> System.out.println(val));

 Finally, consider the concept of collecting. Collecting means that we process

all of our elements in some way and collect the final result. The result is often a single

value. Examples include summing, averaging, finding the minimum, or finding the

maximum of a set of data. The following code shows how we could compute the sum

of all elements in our ArrayList:

 double d = nums.stream()

 .mapToDouble(v -> v)

 .sum();

 5

 System.out.println("The sum is " + d);

The mapToDouble function takes each element and maps it as a double (a bit

redundant here since we are starting with doubles) and then accumulates them into a

sum. As you might surmise, there are also the methods mapToInt(), mapToLong(),

etc. and methods to compute min(), max(), average(), and other values.

More customization is possible using the reduce function. In our case we’ll

use the version that takes as input a seed value and a binary function. Consider a

collection with values v1, v2, and v3. If we start with a seed value s, then reduce will

first apply the binary function to s and v1, producing r1. The binary function is then

applied with r1 and v2, producing r2. Then the binary function applies r2 and v3,

producing r3 which is returned as the final value. The following code computes the

sum of all values using reduce:

 d = nums.stream()

 .reduce(0.0, (v1, v2) -> v1 + v2);

 System.out.println("The sum is " + d);

In this case, 0.0 is the seed value and the second parameter is the function that

specifies how to accumulate the sum of the value. For the first step, v1 corresponds to

0.0 and v2 corresponds to 3.5. This produces the intermediate sum of 3.5. In the

second step, v1 corresponds to 3.5 and v2 corresponds to 56.3 to produce 59.8. In the

third step, v1 corresponds to 59.8 and v2 to 81.1, and so on until the sum is produced.

For an additional example, consider the following list of names:

ArrayList<String> names = new ArrayList<>();

names.add("Paco");

names.add("Enrique");

names.add("Bob");

If we want to compute the average length of all names then we could map the length

to an integer:

d = names.stream()

 .mapToInt(name -> name.length())

 .average()

 .getAsDouble();

System.out.println("The average is " + d)

In this case we map each name to an int using the length() method, compute the

average, and get the value as a double.

 For the final example, say that we want to get the largest name. We can use the

reduction technique:

String s = names.stream()

 .reduce("", (n1, n2) ->

 {

 if (n1.length() > n2.length())

 return n1;

 else

 return n2;

 }

);

System.out.println("longest Name: " + s);

We use a block in this case where the function compares the length of the strings and

returns the largest one. This is one case where we would commonly use the ? operator

to shorten the code:

String s = names.stream()

 .reduce("", (n1, n2) ->

 (n1.length() > n2.length()) ? n1 : n2);

System.out.println("longest Name: " + s);

These examples should give you an idea of what Java lambda expressions look like

and what they can do. While there is definitely a learning curve, lambda expressions

will allow you to write code that is more concise while enabling parallel processing.

Java 8’s new syntax supports both functional programming and object-oriented

programming in a way that reaps the benefits of both styles.

