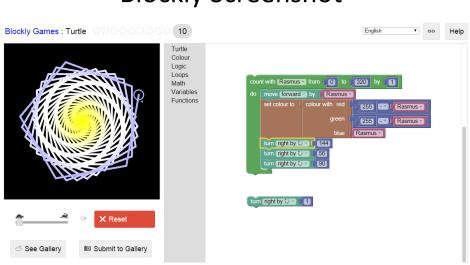
Chapter 1 :: Introduction

Programming Language Pragmatics

Michael L. Scott

Programming Languages


- What programming languages can you name?
- Which do you know?

Introduction

- Why are there so many programming languages?
 - evolution -- we've learned better ways of doing things over time
 - socio-economic factors: proprietary interests, commercial advantage
 - orientation toward special purposes
 - orientation toward special hardware
 - diverse ideas about what is pleasant to use

Introduction

- What makes a language successful?
 - easy to learn (BASIC, Pascal, LOGO, Scheme, Alice)
 - easy to express things, easy use once fluent,
 "powerful" (C, Common Lisp, APL, Algol-68, Perl)
 - easy to implement (BASIC, Forth)
 - possible to compile to very good (fast/small) code (Fortran)
 - backing of a powerful sponsor (COBOL, PL/1, Ada, Visual Basic, C#)
 - wide dissemination at minimal cost (Pascal, Turing, Java, Alice)

Blockly Screenshot

Introduction

- Why do we have programming languages? What is a language for?
 - way of thinking -- way of expressing algorithms
 - languages from the programmer's point of view
 - abstraction of virtual machine -- way of specifying what you want the hardware to do without getting down into the bits
 - languages from the implementor's point of view

Why study programming languages?

- Help you choose a language.
 - C vs. Modula-3 vs. C++ for systems programming
 - Fortran vs. APL vs. Ada for numerical computations
 - Ada vs. Modula-2 for embedded systems
 - Common Lisp vs. Scheme vs. ML for symbolic data manipulation
 - Java vs. C/CORBA for networked PC programs

Why study programming languages?

- Make it easier to learn new languages some languages are similar; easy to walk down family tree
 - concepts have even more similarity; if you think in terms of iteration, recursion, abstraction (for example), you will find it easier to assimilate the syntax and semantic details of a new language than if you try to pick it up in a vacuum. Think of an analogy to human languages: good grasp of grammar makes it easier to pick up new languages (at least Indo-European).

Why study programming languages?

- Help you make better use of whatever language you use
 - understand obscure features:
 - In C, help you understand unions, arrays & pointers, separate compilation, varargs, catch and throw
 - In Common Lisp, help you understand first-class functions/closures, streams, catch and throw, symbol internals

Why study programming languages?

- Help you make better use of whatever language you use (2)
 - understand implementation costs: choose between alternative ways of doing things, based on knowledge of what will be done underneath:
 - use simple arithmetic e.g.(use x*x instead of x**2)
 - use C pointers or Pascal "with" statement to factor address calculations
 - avoid call by value with large data items in Pascal
 - avoid the use of call by name in Algol 60
 - choose between computation and table lookup (e.g. for cardinality operator in C or C++)

Why study programming languages?

- Help you make better use of whatever language you use (3)
 - figure out how to do things in languages that don't support them explicitly:
 - lack of suitable control structures in Fortran
 - use comments and programmer discipline for control structures
 - lack of recursion in Fortran, CSP, etc
 - write a recursive algorithm then use mechanical recursion elimination (even for things that aren't quite tail recursive)

Why study programming languages?

- Help you make better use of whatever language you use (4)
 - figure out how to do things in languages that don't support them explicitly:
 - lack of named constants and enumerations in Fortran
 - use variables that are initialized once, then never changed
 - lack of modules in C and Pascal use comments and programmer discipline
 - lack of iterators in just about everything fake them with (member?) functions

Language Categories

- Two common language groups
 - Imperative

 von Neumann 	(Fortran, Pascal, Basic, C)
 object-oriented 	(Smalltalk, Eiffel, C++, Java)

scripting languages

Declarative

- functional
- logic, constraint-based (Prolog, VisiCalc, RPG)

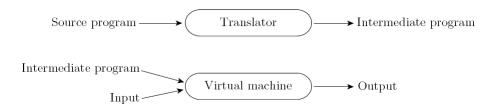
(Scheme, ML, pure Lisp, FP)

(Perl, Python, JavaScript, PHP)

Imperative languages

- Imperative languages, particularly the von Neumann languages, predominate
 - They will occupy the bulk of our attention
- We also plan to spend time on functional, logic languages

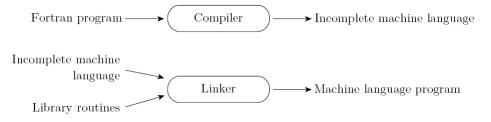
- Compilation vs. interpretation
 - not opposites
 - not a clear-cut distinction
- Pure Compilation
 - The compiler translates the high-level source program into an equivalent target program (typically in machine language), and then goes away:



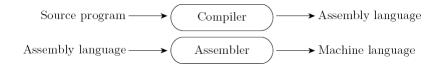
- Pure Interpretation
 - Interpreter stays around for the execution of the program
 - Interpreter is the locus of control during execution

- Interpretation:
 - Greater flexibility
 - Better diagnostics (error messages)
- Compilation
 - Better performance

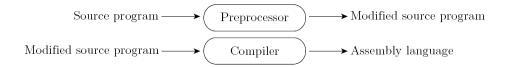
- Common case is compilation or simple preprocessing, followed by interpretation
- Most language implementations include a mixture of both compilation and interpretation



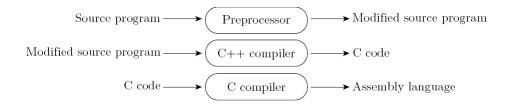
- Note that compilation does NOT have to produce machine language for some sort of hardware
- Compilation is *translation* from one language into another, with full analysis of the meaning of the input
- Compilation entails semantic *understanding* of what is being processed; pre-processing does not
- A pre-processor will often let errors through. A compiler hides further steps; a pre-processor does not


- Many compiled languages have interpreted pieces, e.g., formats in Fortran or C
- Most use "virtual instructions"
 - set operations in Pascal
 - string manipulation in Basic
- Some compilers produce nothing but virtual instructions, e.g., Pascal P-code, Java byte code, Microsoft COM+

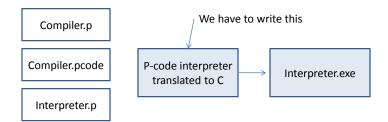
- Implementation strategies:
 - Preprocessor
 - Removes comments and white space
 - Groups characters into *tokens* (keywords, identifiers, numbers, symbols)
 - Expands abbreviations in the style of a macro assembler
 - Identifies higher-level syntactic structures (loops, subroutines)


- Implementation strategies:
 - Library of Routines and Linking
 - Compiler uses a *linker* program to merge the appropriate *library* of subroutines (e.g., math functions such as sin, cos, log, etc.) into the final program:

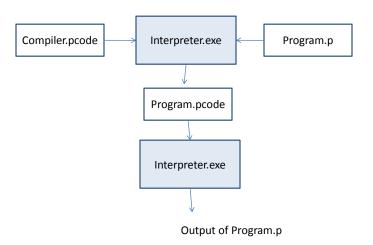
- Implementation strategies:
 - Post-compilation Assembly
 - Facilitates debugging (assembly language easier for people to read)
 - Isolates the compiler from changes in the format of machine language files (only assembler must be changed, is shared by many compilers)



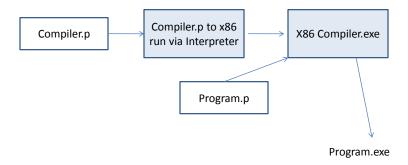
- Implementation strategies:
 - The C Preprocessor (conditional compilation)
 - Preprocessor deletes portions of code, which allows several versions of a program to be built from the same source



• Implementation strategies:


- Source-to-Source Translation (C++)
 - C++ implementations based on the early AT&T compiler generated an intermediate program in C, instead of an assembly language:

- Implementation strategies: — Bootstrapping
- Early Pascal compilers built around a set of tools that included:
 - A Pascal compiler, written in Pascal, that would generate output in P-code, a simple stack-based language
 - A Pascal compiler already translated into P-code
 - A P-code interpreter, written in Pascal



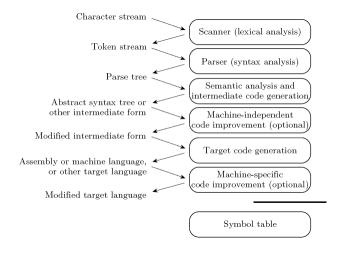
Pascal Interpeter

Bootstrap compiler

Modify Compiler.p to compile to native code instead of P-code, then use the compiler to compile itself

- Implementation strategies:
 - Compilation of Interpreted Languages
 - The compiler generates code that makes assumptions about decisions that won't be finalized until runtime. If these assumptions are valid, the code runs very fast. If not, a dynamic check will revert to the interpreter.

- Implementation strategies:
 - Dynamic and Just-in-Time Compilation
 - In some cases a programming system may deliberately delay compilation until the last possible moment.
 - Lisp or Prolog invoke the compiler on the fly, to translate newly created source into machine language, or to optimize the code for a particular input set.
 - The Java language definition defines a machine-independent intermediate form known as *byte code*. Byte code is the standard format for distribution of Java programs.
 - The main C# compiler produces .NET Common Language Runtime (CLR), which is then translated into machine code immediately prior to execution.

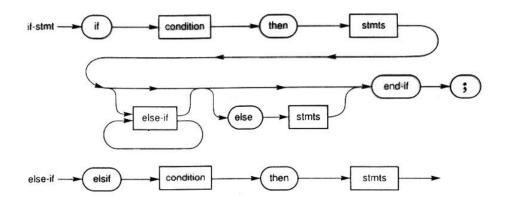

- Compilers exist for some interpreted languages, but they aren't pure:
 - selective compilation of compilable pieces and extrasophisticated pre-processing of remaining source.
 - Interpretation of parts of code, at least, is still necessary for reasons above.
- Unconventional compilers
 - text formatters
 - silicon compilers
 - query language processors

Programming Environment Tools

• Tools; Integrated in an Integrated Development Environment (IDE)

Туре	Unix examples
Editors	vi,emacs
Pretty printers	cb, indent
Pre-processors (esp. macros)	cpp,m4,watfor
Debuggers	adb, sdb, dbx, gdb
Style checkers	lint, purify
Module management	make
Version management	sccs, rcs
Assemblers	as
Link editors, loaders	Id,Id-so
Perusal tools	More, less, od, nm
Program cross-reference	ctags

• Phases of Compilation


An Overview of Compilation

• Scanning:

- divides the program into "tokens", which are the smallest meaningful units; this saves time, since character-by-character processing is slow
- we can tune the scanner better if its job is simple;
 it also saves complexity (lots of it) for later stages
- you can design a parser to take characters instead of tokens as input, but it isn't pretty
- scanning is recognition of a *regular language*, e.g., via DFA (deterministic finite automaton)

- Parsing is recognition of a context-free language, e.g., via Pushdown Automaton (PDA)
 - Parsing discovers the "context free" structure of the program
 - Informally, it finds the structure you can describe with syntax diagrams (the "circles and arrows" in a Pascal manual)

Pascal "Railroad" diagram

- *Semantic analysis* is the discovery of *meaning* in the program
 - The compiler actually does what is called STATIC semantic analysis. That's the meaning that can be figured out at compile time
 - Some things (e.g., array subscript out of bounds) can't be figured out until run time. Things like that are part of the program's DYNAMIC semantics

- Intermediate form (IF) done after semantic analysis (if the program passes all checks)
 - IFs are often chosen for machine independence, ease of optimization, or compactness (these are somewhat contradictory)
 - They often resemble machine code for some imaginary idealized machine; e.g. a stack machine, or a machine with arbitrarily many registers
 - Many compilers actually move the code through more than one IF

- Optimization takes an intermediate-code program and produces another one that does the same thing faster, or in less space
 - The term is a misnomer; we just *improve* code
 - The optimization phase is optional
- Code generation phase produces assembly language or (sometime) relocatable machine language

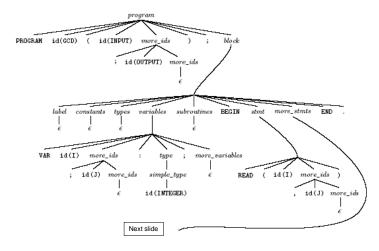
- Certain *machine-specific optimizations* (use of special instructions or addressing modes, etc.) may be performed during or after *target code generation*
- Symbol table: all phases rely on a symbol table that keeps track of all the identifiers in the program and what the compiler knows about them
 - This symbol table may be retained (in some form) for use by a debugger, even after compilation has completed

- Lexical and Syntax Analysis
 - GCD Program (Pascal)

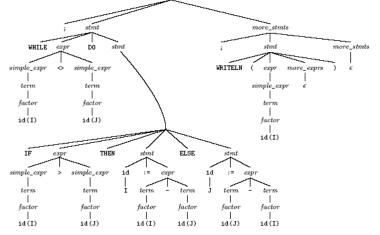
```
program gcd(input, output);
var i, j : integer;
begin
    read(i, j);
    while i <> j do
        if i > j then i := i - j
        else j := j - i;
        writeln(i)
end.
```

- Lexical and Syntax Analysis
 - GCD Program Tokens
 - Scanning (*lexical analysis*) and parsing recognize the structure of the program, groups characters into *tokens*, the smallest meaningful units of the program

program	gcd	(input	,	output)	;
var	i	,	j	:	integer	;	begin
read	(i	,	j)	;	while
i	<>	j	do	if	i	>	j
then	i	:=	i	-	j	else	j
:=	j	-	i	;	writeln	(i
)	end	•					


- Lexical and Syntax Analysis
 - Context-Free Grammar and Parsing
 - Parsing organizes tokens into a *parse tree* that represents higher-level constructs in terms of their constituents
 - Potentially recursive rules known as *context-free grammar* define the ways in which these constituents combine

An Overview of Compilation


- Context-Free Grammar and Parsing
 - Example (Pascal program)

 $\begin{array}{rcl} program & \longrightarrow & {\tt PROGRAM \ id \ (\ id \ more_ids \) \ ; \ block \ .} \end{array}$ where $\begin{array}{rcl} block & \longrightarrow & labels \ constants \ types \ variables \ subroutines \ {\tt BEGIN \ stmt} \\ & more_stmts \ {\tt END} \end{array}$ and $\begin{array}{rcl} more_ids & \longrightarrow & , \ {\tt id \ more_ids} \end{array}$ or $\begin{array}{rcl} more_ids & \longrightarrow & \epsilon \end{array}$

- Context-Free Grammar and Parsing
 - GCD Program Concrete Parse Tree

- Context-Free Grammar and Parsing
 - GCD Program Parse Tree (continued)

- Syntax Tree
 - GCD Program Abstract Parse Tree

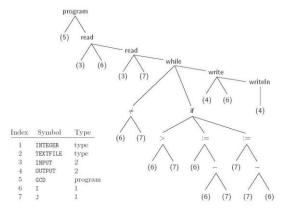


Figure 1.4: Syntax tree and symbol table for the GCD program.

Code Generation

Naïve MIPS assembly code fragment

addiu sw jal nop	sp, sp, -32 ra, 20(sp) getint	<pre># Reserve room for local vars # save return address # read</pre>
-	v0, 28(sp)	# store i
jal	getint	# read
nop		
SW	v0, 24(sp)	# store j
lw	t6, 28(sp)	# load i to t6
lw	t7, 24(sp)	# load j to t7
nop		
beq	t6, t7, D	# branch if I = J
nop		
A: lw	t8, 28(sp)	# load I