
1/12/2015

1

Chapter 1 :: Introduction

Programming Language Pragmatics

Michael L. Scott

Programming Languages

• What programming languages can you name?

• Which do you know?

1/12/2015

2

Introduction

• Why are there so many programming
languages?
– evolution -- we've learned better ways of doing

things over time

– socio-economic factors: proprietary interests,
commercial advantage

– orientation toward special purposes

– orientation toward special hardware

– diverse ideas about what is pleasant to use

Introduction

• What makes a language successful?
– easy to learn (BASIC, Pascal, LOGO, Scheme, Alice)
– easy to express things, easy use once fluent,

"powerful” (C, Common Lisp, APL, Algol-68, Perl)
– easy to implement (BASIC, Forth)
– possible to compile to very good (fast/small) code

(Fortran)
– backing of a powerful sponsor (COBOL, PL/1, Ada,

Visual Basic, C#)
– wide dissemination at minimal cost (Pascal, Turing,

Java, Alice)

1/12/2015

3

Blockly Screenshot

Introduction

• Why do we have programming languages?
What is a language for?

– way of thinking -- way of expressing algorithms

– languages from the programmer’s point of view

– abstraction of virtual machine -- way of
specifying what you want the hardware to do
without getting down into the bits

– languages from the implementor’s point of view

1/12/2015

4

Why study programming languages?

• Help you choose a language.
– C vs. Modula-3 vs. C++ for systems programming

– Fortran vs. APL vs. Ada for numerical computations

– Ada vs. Modula-2 for embedded systems

– Common Lisp vs. Scheme vs. ML for symbolic data
manipulation

– Java vs. C/CORBA for networked PC programs

Why study programming languages?
• Make it easier to learn new languages some

languages are similar; easy to walk down
family tree
– concepts have even more similarity; if you think in

terms of iteration, recursion, abstraction (for
example), you will find it easier to assimilate the
syntax and semantic details of a new language
than if you try to pick it up in a vacuum. Think of
an analogy to human languages: good grasp of
grammar makes it easier to pick up new languages
(at least Indo-European).

1/12/2015

5

Why study programming languages?

• Help you make better use of whatever

language you use

– understand obscure features:

• In C, help you understand unions, arrays & pointers,

separate compilation, varargs, catch and throw

• In Common Lisp, help you understand first-class

functions/closures, streams, catch and throw, symbol

internals

Why study programming languages?

• Help you make better use of whatever
language you use (2)
– understand implementation costs: choose

between alternative ways of doing things, based
on knowledge of what will be done underneath:

– use simple arithmetic e.g.(use x*x instead of x**2)

– use C pointers or Pascal "with" statement to factor address
calculations

– avoid call by value with large data items in Pascal

– avoid the use of call by name in Algol 60

– choose between computation and table lookup (e.g. for
cardinality operator in C or C++)

1/12/2015

6

Why study programming languages?
• Help you make better use of whatever

language you use (3)
– figure out how to do things in languages that

don't support them explicitly:
• lack of suitable control structures in Fortran

• use comments and programmer discipline for
control structures

• lack of recursion in Fortran, CSP, etc

• write a recursive algorithm then use mechanical
recursion elimination (even for things that aren't
quite tail recursive)

Why study programming languages?

• Help you make better use of whatever
language you use (4)
– figure out how to do things in languages that

don't support them explicitly:
– lack of named constants and enumerations in Fortran

– use variables that are initialized once, then never
changed

– lack of modules in C and Pascal use comments and
programmer discipline

– lack of iterators in just about everything fake them with
(member?) functions

1/12/2015

7

Language Categories

• Two common language groups

– Imperative

• von Neumann (Fortran, Pascal, Basic, C)

• object-oriented (Smalltalk, Eiffel, C++, Java)

• scripting languages (Perl, Python, JavaScript, PHP)

– Declarative

• functional (Scheme, ML, pure Lisp, FP)

• logic, constraint-based (Prolog, VisiCalc, RPG)

Imperative languages

• Imperative languages, particularly the von

Neumann languages, predominate

– They will occupy the bulk of our attention

• We also plan to spend time on functional,

logic languages

1/12/2015

8

Compilation vs. Interpretation
• Compilation vs. interpretation

– not opposites

– not a clear-cut distinction

• Pure Compilation

– The compiler translates the high-level source
program into an equivalent target program
(typically in machine language), and then goes
away:

Compilation vs. Interpretation

• Pure Interpretation

– Interpreter stays around for the execution of
the program

– Interpreter is the locus of control during
execution

1/12/2015

9

Compilation vs. Interpretation

• Interpretation:

– Greater flexibility

– Better diagnostics (error messages)

• Compilation

– Better performance

Compilation vs. Interpretation
• Common case is compilation or simple pre-

processing, followed by interpretation

• Most language implementations include a
mixture of both compilation and
interpretation

1/12/2015

10

Compilation vs. Interpretation

• Note that compilation does NOT have to produce
machine language for some sort of hardware

• Compilation is translation from one language into
another, with full analysis of the meaning of the
input

• Compilation entails semantic understanding of
what is being processed; pre-processing does not

• A pre-processor will often let errors through. A
compiler hides further steps; a pre-processor does
not

Compilation vs. Interpretation

• Many compiled languages have interpreted
pieces, e.g., formats in Fortran or C

• Most use “virtual instructions”

– set operations in Pascal

– string manipulation in Basic

• Some compilers produce nothing but virtual
instructions, e.g., Pascal P-code, Java byte
code, Microsoft COM+

1/12/2015

11

Compilation vs. Interpretation

• Implementation strategies:

– Preprocessor

• Removes comments and white space

• Groups characters into tokens (keywords,
identifiers, numbers, symbols)

• Expands abbreviations in the style of a macro
assembler

• Identifies higher-level syntactic structures (loops,
subroutines)

Compilation vs. Interpretation
• Implementation strategies:

– Library of Routines and Linking

• Compiler uses a linker program to merge the
appropriate library of subroutines (e.g., math functions
such as sin, cos, log, etc.) into the final program:

1/12/2015

12

Compilation vs. Interpretation
• Implementation strategies:

– Post-compilation Assembly

• Facilitates debugging (assembly language easier for
people to read)

• Isolates the compiler from changes in the format of
machine language files (only assembler must be
changed, is shared by many compilers)

Compilation vs. Interpretation

• Implementation strategies:
– The C Preprocessor (conditional compilation)

• Preprocessor deletes portions of code, which allows
several versions of a program to be built from the
same source

1/12/2015

13

Compilation vs. Interpretation

• Implementation strategies:

– Source-to-Source Translation (C++)

• C++ implementations based on the early AT&T
compiler generated an intermediate program in C,
instead of an assembly language:

Compilation vs. Interpretation
• Implementation strategies:

– Bootstrapping

• Early Pascal compilers built around a set of tools that included:
– A Pascal compiler, written in Pascal, that would generate output in

P-code, a simple stack-based language
– A Pascal compiler already translated into P-code
– A P-code interpreter, written in Pascal

Compiler.p

Compiler.pcode

Interpreter.p

P-code interpreter
translated to C

We have to write this

Interpreter.exe

1/12/2015

14

Pascal Interpeter

Interpreter.exeCompiler.pcode Program.p

Program.pcode

Interpreter.exe

Output of Program.p

Bootstrap compiler

Compiler.p

Modify Compiler.p to compile to native code instead of P-code, then
use the compiler to compile itself

Compiler.p to x86
run via Interpreter

X86 Compiler.exe

Program.p

Program.exe

1/12/2015

15

Compilation vs. Interpretation

• Implementation strategies:

– Compilation of Interpreted Languages

• The compiler generates code that makes

assumptions about decisions that won’t be finalized

until runtime. If these assumptions are valid, the

code runs very fast. If not, a dynamic check will

revert to the interpreter.

• Implementation strategies:

– Dynamic and Just-in-Time Compilation

• In some cases a programming system may deliberately
delay compilation until the last possible moment.
– Lisp or Prolog invoke the compiler on the fly, to translate

newly created source into machine language, or to optimize
the code for a particular input set.

– The Java language definition defines a machine-independent
intermediate form known as byte code. Byte code is the
standard format for distribution of Java programs.

– The main C# compiler produces .NET Common Language
Runtime (CLR), which is then translated into machine code
immediately prior to execution.

Compilation vs. Interpretation

1/12/2015

16

Compilation vs. Interpretation

• Compilers exist for some interpreted languages,
but they aren't pure:
– selective compilation of compilable pieces and extra-

sophisticated pre-processing of remaining source.
– Interpretation of parts of code, at least, is still

necessary for reasons above.

• Unconventional compilers
– text formatters
– silicon compilers
– query language processors

Programming Environment Tools

• Tools; Integrated in an Integrated Development
Environment (IDE)

1/12/2015

17

An Overview of Compilation
• Phases of Compilation

An Overview of Compilation
• Scanning:

– divides the program into "tokens", which are the
smallest meaningful units; this saves time, since
character-by-character processing is slow

– we can tune the scanner better if its job is simple;
it also saves complexity (lots of it) for later stages

– you can design a parser to take characters instead
of tokens as input, but it isn't pretty

– scanning is recognition of a regular language, e.g.,
via DFA (deterministic finite automaton)

1/12/2015

18

An Overview of Compilation

• Parsing is recognition of a context-free
language, e.g., via Pushdown Automaton
(PDA)

– Parsing discovers the "context free" structure
of the program

– Informally, it finds the structure you can
describe with syntax diagrams (the "circles and
arrows" in a Pascal manual)

Pascal “Railroad” diagram

1/12/2015

19

An Overview of Compilation

• Semantic analysis is the discovery of meaning
in the program

– The compiler actually does what is called STATIC
semantic analysis. That's the meaning that can be
figured out at compile time

– Some things (e.g., array subscript out of bounds)
can't be figured out until run time. Things like
that are part of the program's DYNAMIC
semantics

An Overview of Compilation

• Intermediate form (IF) done after semantic
analysis (if the program passes all checks)
– IFs are often chosen for machine independence,

ease of optimization, or compactness (these are
somewhat contradictory)

– They often resemble machine code for some
imaginary idealized machine; e.g. a stack machine,
or a machine with arbitrarily many registers

– Many compilers actually move the code through
more than one IF

1/12/2015

20

An Overview of Compilation

• Optimization takes an intermediate-code
program and produces another one that
does the same thing faster, or in less space

– The term is a misnomer; we just improve code

– The optimization phase is optional

• Code generation phase produces assembly
language or (sometime) relocatable
machine language

An Overview of Compilation

• Certain machine-specific optimizations (use of
special instructions or addressing modes, etc.)
may be performed during or after target code
generation

• Symbol table: all phases rely on a symbol table
that keeps track of all the identifiers in the
program and what the compiler knows about
them
– This symbol table may be retained (in some form) for

use by a debugger, even after compilation has
completed

1/12/2015

21

An Overview of Compilation
• Lexical and Syntax Analysis

– GCD Program (Pascal)

An Overview of Compilation
• Lexical and Syntax Analysis

– GCD Program Tokens

• Scanning (lexical analysis) and parsing recognize the
structure of the program, groups characters into
tokens, the smallest meaningful units of the program

1/12/2015

22

An Overview of Compilation

• Lexical and Syntax Analysis

– Context-Free Grammar and Parsing

• Parsing organizes tokens into a parse tree that

represents higher-level constructs in terms of their

constituents

• Potentially recursive rules known as context-free

grammar define the ways in which these

constituents combine

An Overview of Compilation
• Context-Free Grammar and Parsing

– Example (Pascal program)

1/12/2015

23

An Overview of Compilation
• Context-Free Grammar and Parsing

– GCD Program Concrete Parse Tree

Next slide

An Overview of Compilation
• Context-Free Grammar and Parsing

– GCD Program Parse Tree (continued)

1/12/2015

24

An Overview of Compilation
• Syntax Tree

– GCD Program Abstract Parse Tree

Code Generation

• Naïve MIPS assembly code fragment

addiu sp, sp, -32 # Reserve room for local vars

sw ra, 20(sp) # save return address

jal getint # read

nop

sw v0, 28(sp) # store i

jal getint # read

nop

sw v0, 24(sp) # store j

lw t6, 28(sp) # load i to t6

lw t7, 24(sp) # load j to t7

nop

beq t6, t7, D # branch if I = J

nop

A: lw t8, 28(sp) # load I

...

