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Syntax

Syntax

• Syntax defines what is grammatically valid in a programming 
language
– Set of grammatical rules

– E.g. in English, a sentence cannot begin with a period

– Must be formal and exact or there will be ambiguity in a 
programming language

• We will study three levels of syntax
– Lexical

• Defines the rules for tokens:  literals, identifiers, etc.

– Concrete Syntax or just “Syntax”
• Actual representation scheme down to every semicolon, i.e. every 

lexical token

– Abstract Syntax – will cover in Semantics
• Description of a program’s information without worrying about specific 

details such as where the parentheses or semicolons go
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BNF or Context Free Grammar

• BNF = Backus-Naur Form to specify a grammar
– Equivalent to a context free grammar

• Set of rewriting rules (a rule that can be applied multiple 
times) also known as production rules defined on a set of 
nonterminal symbols, a set of terminal symbols, and a start 
symbol
– Terminals,  :  Basic alphabet from which programs are constructed.  

E.g., letters, digits, or keywords such as “int”, “main”, “{“, “}”

– Nonterminals, N : Identify grammatical categories

– Start Symbol:  One of the nonterminals which identifies the principal 
category.  E.g., “Sentence” for english, “Program” for a programming 
language

Rewriting Rules

• Rewriting Rules, ρ

– Written using the symbols  and |

| is a separator for alternative definitions, i.e. “OR”

 is used to define a rule, i.e. “IS”

– Format
• LHS  RHS1 | RHS2 | RHS3 | …

• LHS is a single nonterminal

• RHS is any sequence of terminals and nonterminals
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Sample Grammars

• Grammar for subset of English
Sentence Noun Verb
Noun Jack | Jill
Verb eats | bites

• Grammar for a digit
Digit 0 | 1 | 2 | 3 | 4 | 5 | 6 |7 |8 |9

• Grammar for signed integers
SignedInteger Sign Integer
Sign + | -
Integer Digit | Digit Integer

• Grammar for subset of Java
Assignment Variable = Expression
Expression Variable | Variable + Variable | Variable – Variable
Variable X | Y 

Derivation
• Process of parsing data using a grammar

– Apply rewrite rules to non-terminals on the RHS of an existing rule

– To match, the derivation must terminate and be composed of 
terminals only

• Example
Digit 0 | 1 | 2 | 3 | 4 | 5 | 6 |7 |8 |9

Integer Digit | Digit Integer

– Is 352 an Integer?

Integer → Digit Integer → 3 Integer → 

3 Digit Integer →  3 5 Integer → 

3 5 Digit → 3 5 2

Intermediate formats are called sentential forms
This was called a Leftmost Derivation since we replaced the leftmost nonterminal 
symbol each time (could also do Rightmost)



1/12/2015

4

Derivation and Parse Trees

• The derivation can be 
visualized as a parse 
tree
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Parse Tree Sketch for Programs
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BNF and Languages

• The language defined by a BNF grammar is the set of all
strings that can be derived 
– Language can be infinite, e.g. case of integers

• A language is ambiguous if it permits a string to be parsed 
into two separate parse trees
– Generally want to avoid ambiguous grammars
– Example:  

• Expr Integer | Expr + Expr | Expr * Expr |  Expr - Expr
• Parse:   3*4+1

– Expr * Expr → Integer * Expr → 

3 * Expr → 3 * Expr+Expr → … 3 * 4 + 1

– Expr + Expr → Expr + Integer → Expr + 1

Expr * Expr +1 → … 3 * 4 + 1

Ambiguity

• Example for

AmbExp  Integer | AmbExp – AmbExp

2-3-4
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Ambiguous IF Statement

Dangling ELSE:

if (x<0)
if (y<0)  { y=y-1 }
else { y=0 };

Does the else go with the first or second if?

Dangling Else Ambiguity
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How to fix ambiguity?

• Use explicit grammar without ambiguity

– E.g., add an “ENDIF” for every “IF”

• One problem with end markers is that they tend to 
bunch up. In Pascal you say

if A = B then …

else if A = C then …

else if A = D then …

else if A = E then …

else ...;

• With end markers this becomes
if A = B then …

else if A = C then …

else if A = D then …

else if A = E then …

else ...;

end; end; end; end;

Ambiguity

• Fixing Ambiguity

– Java makes a separate category for if-else vs. if:
IfThenStatement If (Expr) Statement

IfThenElseStatement  If (Expr) StatementNoShortIf else 
Statement

StatementNoShortIf contains everything except IfThenStatement,   
so the else always goes with the IfThenElse statement not the 
IfThenStatement

• In general, we add new  grammar rules that enforce 
precedence
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Precedence Example

• Ambiguous
– Expr Identifier  |  Integer | Expr + Expr | Expr * Expr |  Expr –

Expr

• Unambiguous
– Expr Term   |  Expr +  Term  |  Expr - Term
– Term  Factor  |  Term  *  Factor
– Factor  Integer   |  Identifier

• Parse:   3*4+1
– Expr + Term   Term + Term   Term * Factor + Term 
 Integer * Factor + Term   3 * Factor + Term 

3 * Integer + Term  3 * 4 + Term  3 * 4 + Factor 
3 * 4 + Integer  3 * 4 + 1

• What has precedence, + or *?

Alternative to BNF

• The use of regular expressions is a common 
alternate way to express a language 

 The empty string

Kleene Star
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Regex to EBNF

• Sometimes the following variations on “standard” 
regular expressions are used:

{ M }   means zero or more occurrences of M

( M | N)    means one of M or N must be chosen

[ M ] means M is optional

Use “{“  to mean the literal {  not the regex {

Regular Expressions

• Numerical literals in Pascal may be generated 
by the following:
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RegEx Examples

• Booleans
– “true” | “false”

• Integers
– (0-9)+

• Identifiers
– (a-zA-Z)(a-zA-Z0-9)*

• Comments (letters/space only)
– “//”(a-zA-Z)*(“\r” | “\n” | “\r\n”)

• Simple Expressions
– Expr Term ( (+|-) Term )*
– Term  Factor ( (* | / ) Factor) *

• Regular expressions seem pretty powerful
– Can you write one for the language anbn?   (i.e. n a’s followed by n b’s)

Regular Expressions != Context Free 
Grammar

• Regular expressions express a subset of 
context free grammars

– Regular Expressions  Regular Languages 
Language of a Deterministic Finite State 
Automaton

– Context Free Grammars  Context Free 
Languages  Language of a Pushdown 
Automata
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Lexical Analysis

• Lexicon of a programming language – set of all 
nonterminals from which programs are written

• Nonterminals – referred to as tokens

– Each token is described by its type (e.g. identifier, 
expression) and its value (the string it represents)

– Skipping whitespace or comments 

or punctuation

Categories of Lexical Tokens

• Identifiers
• Literals

Includes Integers, true, false, floats, chars
• Keywords

bool char else false float if int main true while
• Operators

= || && == != < <= > >= + - * / % ! [ ]
• Punctuation

; . { } ( )

Issues to consider:   Ignoring comments, role of whitespace, 
distinguising the < operator from <=, distinguishing 
identifiers from keywords like “if” 
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A Simple Lexical Syntax for a Small C-Like 
Language

Primary  Identifier [  "["Expression"]" ] |  Literal | "("Expression")"
| Type "("Expression")"

Identifier  Letter ( Letter | Digit )*
Letter  a | b | … | z | A | B | … Z
Digit  0 | 1 | 2 | …  | 9
Literal  Integer | Boolean | Float | Char
Integer  Digit ( Digit )*
Boolean  true  |  false
Float  Integer .  Integer
Char  ‘ ASCIICHAR ‘

Scanning

• Recall scanner is responsible for

– tokenizing source

– removing comments

– (often) dealing with pragmas (i.e., significant 
comments)

– saving text of identifiers, numbers, strings

– saving source locations (file, line, column) for 
error messages
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Scanning
• Suppose we are building an ad-hoc (hand-

written) scanner for Pascal:
– We read the characters one at a time with 

look-ahead

• If it is one of the one-character tokens 
{ ( ) [ ] < > , ; = + - etc }

we announce that token

• If it is a ., we look at the next character
– If that is a dot, we announce ..

– Otherwise, we announce . and reuse the look-
ahead

Scanning

• If it is a <, we look at the next character

– if that is a = we announce <=

– otherwise, we announce < and reuse the look-
ahead, etc.

• If it is a letter, we keep reading letters and 
digits and maybe underscores until we can't 
anymore

– then we check to see if it is a reserved word
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Scanning

• If it is a digit, we keep reading until we find 
a non-digit

– if that is not a . we announce an integer

– otherwise, we keep looking for a real number

– if the character after the . is not a digit we 
announce an integer and reuse the . and the 
look-ahead

Scanning

• Pictorial 
representation 
of a Pascal 
scanner as a 
finite 
automaton
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Scanning

• This is a deterministic finite automaton (DFA)

– Lex, scangen, etc. build these things automatically 
from a set of regular expressions

– Specifically, they construct a machine that 
accepts the language
identifier | int const 

| real const | comment | symbol | 

...

– This is the Lexical Syntax for the programming 
language

Scanning

• We run the machine over and over to get one 
token after another

– Nearly universal rule:

• always take the longest possible token from the input
thus foobar is foobar and never f or foo or foob

• more to the point, 3.14159 is a real const and never 
3, ., and 14159

• Regular expressions "generate" a regular 
language; DFAs "recognize" it
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Scanning

• Scanners tend to be built three ways
– ad-hoc

– semi-mechanical pure DFA 
(usually realized as nested case statements)

– table-driven DFA

• Ad-hoc generally yields the fastest, most 
compact code by doing lots of special-purpose 
things, though good automatically-generated 
scanners come very close

Scanning
• Writing a pure DFA as a set of nested case 

statements is a surprisingly useful 
programming technique 

– though it's often easier to use perl, awk, sed

• Table-driven DFA is what lex and scangen
produce based on an input grammar

– lex (flex) in the form of C code

– scangen in the form of numeric tables and a 
separate driver (for details see Figure 2.11)
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Scanning
• Note that the rule about longest-possible 

tokens means you return only when the next 
character can't be used to continue the 
current token
– the next character will generally need to be saved 

for the next token
• In some cases, you may need to peek at more 

than one character of look-ahead in order to 
know whether to proceed
– In Pascal, for example, when you have a 3 and you 

a see a dot
• do you proceed (in hopes of getting 3.14)?

or 
• do you stop (in fear of getting 3..5)?

Scanning

• In messier cases, you may not be able to get 
by with any fixed amount of look-ahead. In 
Fortran, for example, we have

DO 5 I = 1,25 loop

DO 5 I = 1.25 assignment

• Here, we need to remember we were in a 
potentially final state, and save enough 
information that we can back up to it, if we 
get stuck later
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Parsing – From lexical to concrete syntax
• Terminology:

– context-free grammar (CFG)

– symbols
• terminals (tokens)

• non-terminals

– production

– derivations (left-most and right-most - canonical)

– parse trees

– sentential form

Parsing

• By analogy to RE and DFAs, a context-free 

grammar (CFG) is a generator for a context-

free language (CFL)

– a parser is a language recognizer

• There is an infinite number of grammars for 

every context-free language 

– not all grammars are created equal, however
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Parsing

• It turns out that for any CFG we can create 
a parser that runs in O(n^3) time

• There are two well-known parsing 
algorithms that permit this

– Early's algorithm

– Cooke-Younger-Kasami (CYK) algorithm

• O(n^3) time is clearly unacceptable for a 
parser in a compiler - too slow

Parsing

• Fortunately, there are large classes of 
grammars for which we can build parsers that 
run in linear time
– The two most important classes are called 

LL and LR

• LL stands for 
'Left-to-right, Leftmost derivation'.

• LR stands for 
'Left-to-right, Rightmost derivation’
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Parsing

• LL parsers are also called 'top-down', or 
'predictive' parsers & LR parsers are also called 
'bottom-up', or 'shift-reduce' parsers

• There are several important sub-classes of LR 
parsers

– SLR

– LALR

• We won't be going into detail on the 
differences between them

Parsing

• Every LL(1) grammar is also LR(1), though right 
recursion in production tends to require very 
deep stacks and complicates semantic analysis

• Every CFL that can be parsed deterministically 
has an SLR(1) grammar (which is LR(1))

• Every deterministic CFL with the prefix property
(no valid string is a prefix of another valid 
string) has an LR(0) grammar
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Parsing

• You commonly see LL or LR written with a 

number in parentheses after it

– This number indicates how many tokens of 

look-ahead are required in order to parse

– Almost all real compilers use one token of look-

ahead

• This grammar is LL(1) 
– idlist idlist id    |    id

LL vs. LR

Input string:  A, B, C;

Token list:
A
,
B
,
C
;
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LL Parsing

• Here is an LL(1) grammar for a calculator 
language (Fig 2.15):

1. program  stmt_list $$

2. stmt_list  stmt stmt_list

3. | 

4. stmt  id := expr

5. | read id 

6. | write expr

7. expr  term term_tail

8. term_tail  add_op term term_tail

9. | 

LL Parsing

• LL(1) grammar (continued)
10. term  factor fact_tail

11. fact_tail  mult_op fact fact_tail

12. | 

13. factor  ( expr ) 

14. | id 

15. | number

16. add_op  + 

17. | -

18. mult_op  * 

19. | /
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LL Parsing
• Example program

read A

read B

sum := A + B

write sum

write sum / 2

• First we extract tokens and find identifiers
• We start at the top and predict needed productions 

on the basis of the current left-most non-terminal in 
the tree and the current input token
– Called recursive descent

Recursive Descent Parser
void match(expected)

if input_token = expected
consume input_token

else parse_error

void program()
if input_token = ID, READ, WRITE, $$

stmt_list()
match($$)

else parse_error

void stmt_list()
if input_token = ID, READ, WRITE

stmt();
stmt_list();

if input_token = $$
skip

else parse_error

1. program  stmt_list $$

2. stmt_list  stmt stmt_list

3. | 
4. Stmt  id := expr

5. | read id 

6. | write expr
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Recursive Descent Parser
void stmt()

if input_token = ID
match(id)
match(:=)
expr()

if input_token = READ
match(read)
match(id)

if input_token = WRITE
match(write)
expr()

else parse_error

void expr()
if input_token = ID, NUMBER, (

term();
term_tail()

else parse_error

Stmt  id := expr

| read id 

| write expr

expr  term term_tail

term_tail  add_op term term_tail

| 
term  factor fact_tail

factor  ( expr ) 

| id 

| number

Recursive Descent Parser
void term_tail()

if input_token = +, -
add_op()
term()
term_tail()

if input_token = ), ID, READ, WRITE, $$
skip

else parse_error

void term()
if input_token = ID, NUMBER, (

factor()
factor_tail()

else parse_error

term_tail  add_op term term_tail | ε

term  factor fact_tail

fact_tail  mult_op fact fact_tail | ε

factor  ( expr ) 

| id 

| number

add_op  +  | -

mult_op  * | /
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Recursive Descent Parser
void factor_tail()

if input_token = *, /
mult_op()
factor()
factor_tail()

if input_token = +,-,), ID, READ, WRITE, $$
skip

else parse_error

void factor()
if input_token = ID

match(id)
if input_token = NUMBER

match(number)
if input_token = (

match (()
expr()
match())

else parse_error

term_tail  add_op term term_tail | ε

term  factor fact_tail

fact_tail  mult_op fact fact_tail | ε

factor  ( expr ) 

| id 

| number

add_op  +  | -

mult_op  * | /

void add_op()
if input_token = +

match(+)
if input_token = -

match(-)
else parse_error

void mult_op()
if input_token = *

match(*)
if input_token = /

match(/)
else parse_error

Parse Tree
read A

read B

sum := A + B

write sum

write sum / 2
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LL Parsing

• Table-driven LL parsing:  you have a big loop in 
which you repeatedly look up an action in a 
two-dimensional table based on current 
leftmost non-terminal and current input 
token.  The actions are 

(1) match a terminal

(2) predict a production

(3) announce a syntax error

LL Parsing
• LL(1) parse table for parsing for calculator 

language
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LL Parsing

• To keep track of the left-most non-terminal, 
you push the as-yet-unseen portions of 
productions onto a stack

– for details see Figure 2.20

• The key thing to keep in mind is that the stack 
contains all the stuff you expect to see 
between now and the end of the program 

– what you predict you will see 

LL Parsing
• Problems trying to make a grammar LL(1)

– left recursion

• example:

id_list  id | id_list , id

equivalently

id_list  id id_list_tail

id_list_tail  , id id_list_tail

| ε

• we can get rid of all left recursion mechanically in any 
grammar
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LL Parsing
• Problems trying to make a grammar LL(1)

– common prefixes: another thing that LL parsers 
can't handle
• solved by "left-factoring”

• example:

stmt  id := expr | id ( arg_list )

equivalently

stmt  id id_stmt_tail

id_stmt_tail  := expr

| ( arg_list)

• we can eliminate left-factor mechanically

LL Parsing
• Note that eliminating left recursion and 

common prefixes does NOT make a 

grammar LL

– there are infinitely many non-LL 

LANGUAGES, and the mechanical 

transformations work on them just fine

– the few that arise in practice, however, can 

generally be handled with kludges
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Bottom-Up and LR Parsing

• Skipping this part in the text

– Almost always table-driven

• The algorithm to build predict sets is tedious (for 
a "real" sized grammar), but relatively simple

• It consists of three stages:

– (1) compute FIRST sets for symbols

– (2) compute FOLLOW sets for non-terminals
(this requires computing FIRST sets for some strings)

– (3) compute predict sets or table for all productions


