1/12/2015

Syntax

Syntax

* Syntax defines what is grammatically valid in a programming
language
— Set of grammatical rules
— E.g. in English, a sentence cannot begin with a period
— Must be formal and exact or there will be ambiguity in a
programming language
* We will study three levels of syntax
— Lexical
* Defines the rules for tokens: literals, identifiers, etc.
— Concrete Syntax or just “Syntax”

* Actual representation scheme down to every semicolon, i.e. every
lexical token

— Abstract Syntax — will cover in Semantics

* Description of a program’s information without worrying about specific
details such as where the parentheses or semicolons go

1/12/2015

BNF or Context Free Grammar

* BNF = Backus-Naur Form to specify a grammar
— Equivalent to a context free grammar
* Set of rewriting rules (a rule that can be applied multiple
times) also known as production rules defined on a set of
nonterminal symbols, a set of terminal symbols, and a start
symbol

— Terminals, Y : Basic alphabet from which programs are constructed.
E.g., letters, digits, or keywords such as “int”, “main”, “{“, “}’

— Nonterminals, N : Identify grammatical categories

— Start Symbol: One of the nonterminals which identifies the principal
category. E.g., “Sentence” for english, “Program” for a programming
language

Rewriting Rules

* Rewriting Rules, p
— Written using the symbols = and |
| is a separator for alternative definitions, i.e. “OR”
- is used to define a rule, i.e. “IS”

— Format
* LHS - RHS1 | RHS2 | RHS3 | ...
* LHS is a single nonterminal
* RHS is any sequence of terminals and nonterminals

Sample Grammars

* Grammar for subset of English
Sentence - Noun Verb
Noun -> Jack | Jill
Verb - eats | bites
* Grammar for a digit
Digit>0|1|2|3|4|5]61]71|8]9
* Grammar for signed integers
Signedinteger - Sign Integer
Sign > + | -
Integer - Digit | Digit Integer
* Grammar for subset of Java
Assignment > Variable = Expression
Expression > Variable | Variable + Variable | Variable — Variable
Variable > X | Y

Derivation

* Process of parsing data using a grammar
— Apply rewrite rules to non-terminals on the RHS of an existing rule
— To match, the derivation must terminate and be composed of
terminals only
* Example
Digit>0|1]2]3]|4]|5]|6]7]8]9
Integer = Digit | Digit Integer
— 15352 an Integer?
Integer —» Digit Integer - 3 Integer -
3 Digit Integer - 3 5 Integer -
3 5 Digit - 3 5 2

Intermediate formats are called sentential forms
This was called a Leftmost Derivation since we replaced the leftmost nonterminal
symbol each time (could also do Rightmost)

1/12/2015

1/12/2015

Derivation and Parse Trees

* The derivation can be
visualized as a parse

tree
Integer
Digit Integer
3 / Digit Integer
4 /Dig‘/
2

Parse Tree Sketch for Programs

Program
void main () { Declarations Statements }
Declaration Statement
Type Identifiers H Assignment
1
|
1
1
’ .
int Identifier Identifier = Expression ~;
1 1 1
1 1 1
1 | 1
1 1 1
1 1 |
X X Literal

1
i
i
1

1/12/2015

BNF and Languages

* The language defined by a BNF grammar is the set of all
strings that can be derived
— Language can be infinite, e.g. case of integers
* Alanguage is ambiguous if it permits a string to be parsed
into two separate parse trees
— Generally want to avoid ambiguous grammars
— Example:
* Expr = Integer | Expr + Expr | Expr * Expr | Expr - Expr
* Parse: 3*4+1
— Expr * Expr - Integer * Expr -
3 * Expr - 3 * Expr+Expr - .. 3 * 4 + 1
— Expr + Expr — Expr + Integer - Expr + 1
Expr * Expr +1 - .. 3 * 4 + 1

Ambiguity

* Example for
AmbExp = Integer | AmbExp — AmbExp

2-3-4
AmbExp AmbExp
AmbExp - flrxp\ }l‘aﬂp\ - AmbExp
Int eger AmbExp — AmbExp AmbExp _— AmbExp Int eger
| |
1 |
1 l
2 Integer Integer Integer Integer 4
| | | |
I I I I
1 I 1 |
i I [I
i I i i
3 4 2 3

1/12/2015

Ambiguous IF Statement

Dangling ELSE:
if (x<0)
if (y<0) {y=y-1}
else {y=0};

Does the else go with the first or second if?

IfStatement — if (Expression) Statement |
if (Expression) Statement else Statement

Statement — Assignment | IfStatement

Dangling Else Ambiguity

/I? atem<\ //Ifsft ement\
if (Expresszon Statement else Statelment
i

if (Expresuon Statemem

ljStat ement

/// I \ 0 /l?mz m\n\\
Starement it (Express:on Smtement

(" Expression) Starement else
1
i
| I
1

0; Y<0 ¥ = y=1;

y<0 ¥ = gEl] y

===

1/12/2015

How to fix ambiguity?

* Use explicit grammar without ambiguity
— E.g., add an “ENDIF” for every “IF”

* One problem with end markers is that they tend to
bunch up. In Pascal you say

if A = B then ..

else if A = C then ..
else if A = D then ..
else if A = E then ..
else ...;

e With end markers this becomes

if A = B then ..

else if A = C then ..
else if A = D then ..
else if A = E then ..
else ...;

end; end; end; end;

Ambiguity

* Fixing Ambiguity

— Java makes a separate category for if-else vs. if:
IfThenStatement - If (Expr) Statement

IfThenElseStatement - If (Expr) StatementNoShortif else
Statement

StatementNoShortIf contains everything except IfThenStatement,
so the else always goes with the IfThenElse statement not the
IfThenStatement

* |In general, we add new grammar rules that enforce
precedence

Precedence Example

Ambiguous

— Expr = Identifier | Integer | Expr + Expr | Expr * Expr | Expr—
Expr

Unambiguous

— Expr > Term | Expr + Term | Expr-Term
— Term - Factor | Term * Factor

— Factor 2 Integer | Identifier

Parse: 3*4+1
— Expr + Term = Term + Term = Term * Factor + Term
> Integer * Factor + Term = 3 * Factor + Term =
3 * Integer + Term = 3 * 4 + Term > 3 * 4 + Factor >
3 * 4 + Integer » 3 * 4 + 1

What has precedence, + or *?

Alternative to BNF

e The use of regular expressions isa common
alternate way to express a language

Regular Expression Meaning

X A character (stands for itself)
"xyz" A literal string (stands for itself)
M| N Mor N
Kleenestar M N M followed by N (concatenation)

T M Zero or more occurrences of M
M+ One or more occurrences of M
M? Zero or one occurrence of M
[a-zA-Z] Any alphabetic character
[0-9] Any digit
; Any single character
g The empty string

1/12/2015

Regex to EBNF

* Sometimes the following variations on “standard”
regular expressions are used:
{M} means zero or more occurrences of M
(M] N) meansone of M or N must be chosen
[M] means M is optional

Use “{“ to mean the literal { not the regex {

Regular Expressions

* Numerical literals in Pascal may be generated
by the following:

digit. — 01| 2]|3]|4]|5]|6]|7]|8]9
unsigned_integer — digit digit *
unsigned_number — unsigned_nteger ((. unsigned_integer) | €)

(((e | E) (+ | = | €) unsigned_integer) | €)

1/12/2015

RegEx Examples

Booleans

— “true” | “false”

Integers

— (0-9)+

Identifiers

— (a-zA-Z)(a-zA-Z0-9)*
Comments (letters/space only)
= “I/"(@zAZ)*("\r” | “\n” | “\r\n”)
Simple Expressions

— Expr = Term ((+]-) Term)*

— Term - Factor ((* | /) Factor) *
Regular expressions seem pretty powerful

— Can you write one for the language a"b"? (i.e. n a’s followed by n b’s)

Regular Expressions != Context Free

Grammar

Regular expressions express a subset of

context free grammars

— Regular Expressions € —> Regular Languages €<~
Language of a Deterministic Finite State

Automaton

— Context Free Grammars €< - Context Free
Languages € —> Language of a Pushdown

Automata

1/12/2015

10

1/12/2015

Lexical Analysis

* Lexicon of a programming language — set of all
nonterminals from which programs are written

* Nonterminals — referred to as tokens

— Each token is described by its type (e.g. identifier,
expression) and its value (the string it represents)

— Skipping whitespace or comments

Comment —» // compute result = the nth Fibonacci number
void main ()_{
Keyword Z_-»int n ;4‘—\ Separator or punctuation
) n = 8z

Identifier / \
Literal

Operator

Categories of Lexical Tokens

Identifiers

Literals

Includes Integers, true, false, floats, chars
Keywords

bool char else false float if int main true while
Operators

= || && ==Il=<<=>>=+-* /% |[]
Punctuation

;- {3H(0)

Issues to consider: Ignoring comments, role of whitespace,
_dlstm%ulsmg the < operator from <=, distinguishing
identifiers from keywords like “if”

11

A Simple Lexical Syntax for a Small C-Like
Language

Primary — Identifier ["["Expression"]"] | Literal | "("Expression")"
| Type "("Expression")"

Identifier — Letter (Letter | Digit)*
Letter >a|b|..|z|A|B]|..Z
Digit—>0]1]2].. |9

Literal > Integer | Boolean | Float | Char
Integer — Digit (Digit)*

Boolean — true | false

Float — Integer . Integer

Char — “ ASCIICHAR *

Scanning

* Recall scanner is responsible for
— tokenizing source
— removing comments
— (often) dealing with pragmas (i.e., significant
comments)
— saving text of identifiers, numbers, strings

— saving source locations (file, line, column) for
error messages

1/12/2015

12

1/12/2015

Scanning

* Suppose we are building an ad-hoc (hand-
written) scanner for Pascal:

— We read the characters one at a time with

look-ahead
e Ifitis one of the one-character tokens
{)y 11 <>, ; =+ - etc }

we announce that token

e Ifitisa ., we look at the next character
— If that is a dot, we announce ..

— Otherwise, we announce . and reuse the look-
ahead

Scanning

e Ifitisa <, we look at the next character
—if that is a = we announce <=
— otherwise, we announce < and reuse the look-
ahead, etc.

* Ifitis a letter, we keep reading letters and
digits and maybe underscores until we can't
anymore
— then we check to see if it is a reserved word

13

Scanning

 Ifitis a digit, we keep reading until we find
a non-digit
— if that is not a . we announce an integer
— otherwise, we keep looking for a real number

— if the character after the . is not a digit we
announce an integer and reuse the . and the
look-ahead

Scanning

pace, tab, newline, return

Pictorial

rbrac

representation ,
of a Pascal :
scanner asa

finite
automaton

]
Ibrac
O dot O dotdot
< =
© It le

letter letter. digit. _

identifier or key word

1/12/2015

14

1/12/2015

Scanning

* This is a deterministic finite automaton (DFA)

— Lex, scangen, etc. build these things automatically
from a set of regular expressions

— Specifically, they construct a machine that
accepts the language
identifier | int const
| real const | comment | symbol |

— This is the Lexical Syntax for the programming
language

Scanning

* We run the machine over and over to get one
token after another
— Nearly universal rule:

* always take the longest possible token from the input
thus foobar is foobar and never f or foo or foob

* more to the point, 3.14159 is a real const and never
3, .,and 14159

* Regular expressions "generate" a regular
language; DFAs "recognize" it

15

1/12/2015

Scanning

* Scanners tend to be built three ways
— ad-hoc

— semi-mechanical pure DFA
(usually realized as nested case statements)

— table-driven DFA

* Ad-hoc generally yields the fastest, most
compact code by doing lots of special-purpose
things, though good automatically-generated
scanners come very close

Scanning

* Writing a pure DFA as a set of nested case
statements is a surprisingly useful
programming technique

— though it's often easier to use perl, awk, sed
* Table-driven DFA is what lex and scangen

produce based on an input grammar

— lex (flex) in the form of C code

— scangen in the form of numeric tables and a
separate driver (for details see Figure 2.11)

16

Scanning

* Note that the rule about longest-possible
tokens means you return only when the next
character can't be used to continue the
current token

— the next character will generally need to be saved
for the next token

In some cases, you may need to peek at more
than one character of look-ahead in order to
know whether to proceed

— In Pascal, for example, when you have a 3 and you
a see adot
* do you proceed (in hopes of getting 3.14)?
or

* do you stop (in fear of getting 3..5)?

Scanning

In messier cases, you may not be able to get
by with any fixed amount of look-ahead. In
Fortran, for example, we have

DO 5 I = 1,25 1loop

DO 5 I = 1.25 assignment

Here, we need to remember we were in a
potentially final state, and save enough
information that we can back up to it, if we
get stuck later

1/12/2015

17

Parsing — From lexical to concrete syntax

* Terminology:
— context-free grammar (CFG)

— symbols
* terminals (tokens)
* non-terminals

— production

— derivations (left-most and right-most - canonical)
— parse trees

— sentential form

Parsing

* By analogy to RE and DFAs, a context-free
grammar (CFG) is a generator for a context-
free language (CFL)

— a parser is a language recognizer

* There is an infinite number of grammars for

every context-free language

— not all grammars are created equal, however

1/12/2015

18

Parsing

* |t turns out that for any CFG we can create
a parser that runs in O(n”3) time

* There are two well-known parsing
algorithms that permit this
— Early's algorithm
— Cooke-Younger-Kasami (CYK) algorithm

* O(n”"3) time is clearly unacceptable for a
parser in a compiler - too slow

Parsing

* Fortunately, there are large classes of
grammars for which we can build parsers that
run in linear time
— The two most important classes are called

LL and LR

e LL stands for

'Left-to-right, Leftmost derivation'.

* LR stands for
'Left-to-right, Rightmost derivation’

1/12/2015

19

1/12/2015

Parsing

* LL parsers are also called 'top-down’, or
'predictive’ parsers & LR parsers are also called
'bottom-up’, or 'shift-reduce’ parsers

* There are several important sub-classes of LR
parsers
—SLR
— LALR

* We won't be going into detail on the
differences between them

Parsing

e Every LL(1) grammar is also LR(1), though right
recursion in production tends to require very
deep stacks and complicates semantic analysis

* Every CFL that can be parsed deterministically
has an SLR(1) grammar (which is LR(1))

* Every deterministic CFL with the prefix property
(no valid string is a prefix of another valid
string) has an LR(0) grammar

20

1/12/2015

Parsing

* You commonly see LL or LR written with a
number in parentheses after it

— This number indicates how many tokens of
look-ahead are required in order to parse

— Almost all real compilers use one token of look-
ahead

e This grammar is LL(1)
— idlist > idlist id | id

id_list id(A)

id_list ian) ,
LLvs. LR IS SAERS ;A

id(a) id_list_tail
1aw) , 4@ ,
’/“E id(A) , id(B) , 1d(C)
. Dy

Input string: A, B, C; 1R id_list_tail 1) , 1d(B) , 14(O) ;

AT
E m(E) id_list_tail id(A) , id(B) , 14(C) id list_tail

Token list:

A i et 1408) , 14®) id_list_tail
S P
) id(A) id_list_tail -~ S
5 ,14(C) id_list_tail
Jsd®) id_list_tail
’ T san) id_list_tail
C , 1d(C) id_list_tail ¥ _l,_\
id_list S 1a®) id list_tail
; %
14 id_list_tail . sace) id list_tail
» e
J 1d®) id_list_tail
= id_list

% \"'j\ i ; //\\

s 440 W ""‘ fail |0y id_fist_tail

J sa®) id_list_tail
P T

id_list —> 1d id_list_tail U sae id list_tail

id_list_tail >, id id_list_tail

id_list_tail —> ;

© by Elsevier, Inc. All rights reserved

21

1/12/2015

LL Parsing

Here is an LL(1) grammar for a calculator
language (Fig 2.15):

1. program — stmt_list $$

2. stmt_list — stmt stmt_list

3. | €

4. stmt - id := expr

5. | read id

6. | write expr

7. expr — term term tail

8. term tail — add op term term tail
9. |

€

LL Parsing
e LL(1) grammar (continued)
10. term - factor fact tail
11. fact tail — mult op fact fact tail
12. | €
13. factor - (expr)
14. | id
15. | number
16. add op - +
17. | -
18. mult op - *
19. |/

22

1/12/2015

LL Parsing

Example program

read A

read B

sum := A + B

write sum

write sum / 2
First we extract tokens and find identifiers

We start at the top and predict needed productions
on the basis of the current left-most non-terminal in
the tree and the current input token

— Called recursive descent

Recursive Descent Parser

void match(expected)

1. program — stmt_list $$
if input_token = expected 2. stmt list |—> stmt stmt_list
R . €
consume input_token 4. Stmt - id := expr
5. | read id
else parse_error 6. | write expr

void program()
if input_token = ID, READ, WRITE, $$
stmt_list()
match($$)
else parse_error

void stmt_list()
if input_token = ID, READ, WRITE
stmt();
stmt_list();
if input_token = $$
skip
else parse_error

23

Recursive Descent Parser

void stmt() semt > i SE
if input_token = ID | write expr
. expr — term term tail
matCh(ld) term tail — add op term term tail
— | €
matCh('_) term — factor fact tail
expr() factor l—)_gexpr)
. . 1
if input_token = READ | number
match(read)
match(id)

if input_token = WRITE
match(write)
expr()

else parse_error

void expr()
if input_token = 1D, NUMBER, (
term();
term_tail()

else parse_error

Recursive Descent Parser

term tail > add op term term tail | e

void term_tail() term) > factor fact tail)
if input_token =+ - ﬁ:z:;:all 9—)""-(11:};5)fact fact tail | ¢
add_op() : ;izgmber
term() add _op >+ | -
term_tail() mult op > * 1/
if input_token =), ID, READ, WRITE, $$
skip
else parse_error
void term()
if input_token = 1D, NUMBER, (

factor()
factor_tail()
else parse_error

1/12/2015

24

1/12/2015

Recursive Descent Parser

term tail > add op term term tail | e

void factor_tail() term > factor fact tail
e _ fact _tail - mult op fact fact_tail | e
if input_token = *, / factor > (expr) -
| id
mUIt—OP() | number
factor() add_op > o+ | -

factor_tail() mult_op > * 1/

if input_token = +,-,), ID, READ, WRITE, $$

skip void add_op()
else parse_error if input_token =+
match(+)
void factor() if input_token = -
if input_token = 1D match(-)
match(id) else parse_error
if input_token = NUMBER
match(number) void mult_op()
if input_token = (if input_token = *
match (() match(*)
expr() if input_token =/
match()) match(/)
else parse_error else parse_error
o Parse Tree
///A\\\ read A
stmit_list $$ read B
sum := A + B
stmit stmt_list write sum

write sum / 2

read id(A) stmi stmt_list
read id(B) stmt stmit_list
id(sum) := expr stmit stmit_list

e N Y N

term term_tail write expr stmt stmit_list

N ST~ AN

factor factor_tail add_op term term_tail term term_tail — write expr €
id () € + factor factor_tail € factor factor_tail € term term_tail
id (B) € id (sum) € factor factor_tail €

id(sum) mult_op factor factor_tail

/ number (2) €

25

1/12/2015

LL Parsing

* Table-driven LL parsing: you have a big loop in
which you repeatedly look up an action in a
two-dimensional table based on current
leftmost non-terminal and current input
token. The actions are
(1) match a terminal
(2) predict a production
(3) announce a syntax error

LL Parsing
* LL(1) parse table for parsing for calculator
language
Top-of-stack Current input token
nonterminal id number read write := () + - x / §§
program 1 1 1 1
stmt_list 2 2 2 3
stmt 4 5 6
expr 7 7 7
term_tail 9 9 9 9 8 8 9
term | 10 10 10
factor_tail | 12 12 12 12 12 12 11 11 12
factor | 14 15 13
add_op 16 17
mult_op 18 19

26

1/12/2015

LL Parsing

* To keep track of the left-most non-terminal,
you push the as-yet-unseen portions of
productions onto a stack

— for details see Figure 2.20
* The key thing to keep in mind is that the stack

contains all the stuff you expect to see
between now and the end of the program

— what you predict you will see

LL Parsing

* Problems trying to make a grammar LL(1)
— left recursion

* example:

id list — 1id | id 1ist , 1id
equivalently

id 1ist — id id 1ist tail

id 1ist tail — , 1id id list tail

| €

* we can get rid of all left recursion mechanically in any
grammar

27

1/12/2015

LL Parsing

* Problems trying to make a grammar LL(1)
— common prefixes: another thing that LL parsers

can't handle
* solved by "left-factoring”
* example:
stmt — 1id := expr | id (arg list)
equivalently
stmt — 1id 1id stmt tail
id stmt tail — := expr

| (arg list)
* we can eliminate left-factor mechanically

LL Parsing

* Note that eliminating left recursion and
common prefixes does NOT make a
grammar LL

— there are infinitely many non-LL
LANGUAGES, and the mechanical
transformations work on them just fine

— the few that arise in practice, however, can
generally be handled with kludges

28

1/12/2015

Bottom-Up and LR Parsing

* Skipping this part in the text
— Almost always table-driven

* The algorithm to build predict sets is tedious (for
a "real" sized grammar), but relatively simple

* It consists of three stages:
— (1) compute FIRST sets for symbols

— (2) compute FOLLOW sets for non-terminals
(this requires computing FIRST sets for some strings)

— (3) compute predict sets or table for all productions

29

