
Algorithms - Basic Concepts 

 

Algorithms – so what is an algorithm, anyway? 

 

The dictionary definition:  An algorithm is a well-defined computational procedure that 

takes input and produces output.  This class will deal with how to design algorithms and 

understand their complexity in terms of runtime, space, and correctness. 

 

Examples: data compression, path-finding, game-playing, scheduling, bin packing 

 

Example algorithm: Insertion Sort 

 

Insertion sort is how people often sort a hand of cards.  Starting from the left, go towards 

the right and make sure that everything on the left hand side is correctly sorted.  For 

example: 

 

Original: 5 3 8 2 10 7 

Pass 1:  3 5| 8 2 10 7 

Pass 2:  3  5 8| 2 10 7 

Pass 3:  2 3 5 8| 10 7 

Pass 4:  2 3 5 8 10| 7 

Pass 5:  2 3 5 7 8 10| 

 

Here is the pseudocode for the Insertion sort algorithm. 

Typically we will use pseudocode and not actual implementation code. 

 

Insertion-Sort(A)     ; Assume our arrays start at index 1 and not at 0 

 For j 2 to length(A) 

 Do  

keyA[j] 

i j-1 

while i>0 and A[i] > key 

 do 

  A[i+1] A[i] 

  i i-1 

A[i+1]key 

 

Run through algorithm on our input, 5 3 8 2 10 7 

J=2 

 A=[5 3 8 2 10 7] Key=3 

 I=1 

 A[1]>3 so A[2]=A[1] 

 A[1]=3 

 

 

 



J=3 

 A=[3 5 8 2 10 7] Key=8 

 I=2 

 A[2] < 8 

 A[3]=8 

J=4 

 A=[3 5 8 2 10 7] Key=2 

 I=3 

 A[3]>2 so A[4]=A[3] 

 A[2]>2 so A[3]=A[2] 

 A[1]>2 so A[2]=A[1] 

 A[1]=2  

J=5 

 A=[2 3 5 8 10 7] 

 … 

 The final two passes are left as an exercise for you to verify. 

 

It looks like this algorithm works to sort the input. But how do we analyze it?  There are 

also certainly many other ways to sort the data (and we’ll look at lots of them!) What 

makes one algorithm better than another? 

 

Let’s make an assumption that we will use throughout most of this class. 

 

RAM model.  This is a uniprocessor, random access machine with no parallelism 

(PRAM). 

 

Run time and space will generally depend on the size of the input. 

 

Input Size ‘n’ : Definition of n depends on the problem.  It may be bits, bytes, but is 

usually the number of items in the input.  For sorting, n=# of items to sort.  For a graph, n 

could be the number of nodes or the number of links. 

 

Running time: defined as the number of steps that are executed in the program. 

 

Let’s count up the runtime for this algorithm. This can be a little tricky since the loop 

doesn’t always run the same number of times, but varies depending on the input. 

 

Let tj = the # of times the inner while loop is examined for the current value of j.  This 

includes checking for the exit condition of the loop. 



Code     Cost  Times 

 

For j 2 to length(A)   C1  n 

Do  

keyA[j]   C2  n-1 

i j-1    C3  n-1 

while i>0 and A[i] > key C4  t jj

n

 2
 

 do 

A[i+1] A[i]  C5  )1(
2

 

n

j jt  

i i-1   C6  )1(
2

 

n

j jt  

A[i+1]key   C7  n-1 

 

The statement for the outer j loop will run n times (once for each element, once to check 

the exit condition).  The inner statements run n-1 times.  Since we’ve defined tj as the 

number of times the inner loop is executed for a value of j, to get the total times it is run 

we just add up the sum or all values of j. 

 

Our total runtime is then: 

 

 C1(n)+C2(n-1)+C3(n-1)+C4( t jj

n

 2
)+C5( t jj

n

 
2

1)+C6( t jj

n

 
2

1)+C7(n-1) 

 

 

Doing a little math: 

 

 C1(n)+C2(n)-C2+C3(n)-C3+C4( t jj

n

 2
)+(C5+C6)( t jj

n

 
2

1)+C7(n)-C7 

 

 (C1+C2+C3+C7)(n) – (C2+C3+C7) + (C4)( t jj

n

 2
) + (C5+C6)( )1(

2
 

n

j jt ) 

 

What’s the best case?  If the input is already sorted.  In this case,  j t j, 1.  That is the 

inner loop only gets executed once since we’ll immediately find the right spot for the last 

item. 

 

Runtime for this case: 

 

 (C1+C2+C3+C7)(n) – (C2+C3+C7) + (C4)( 1
2j

n

 ) + (C5+C6)(0) 

 (C1+C2+C3+C7)(n) – (C2+C3+C7) + (C4)(n-1)  

 

 (C1+C2+C3+C4+C7)(n)-(C2+C3+C7+C4) 

 

 = (CONSTANT1)n – CONSTANT2 

 



 This is a linear function of n ; y=ax+b.  The runtime will increase linearly as the 

size of the input increases 

. 

 

 

   

 

 

 

 

 

 

What’s the worst case?  Lets say that the input conspires to provide the worst runtime.  

This would happen if the array was in reverse order, because then we have to compare 

with every other number in the inner loop. 

 

 5 4 3 2 1 

j=2 tj = 2 compares 

j=3 tj = 3 compares 

j=4 tj = 4 compares 

… 

 

So we know that tj = j 

 

t jj

n

 2
= j

j

n

 2
=

 
1

2

1


nn
 

 

t jj

n

 
2

1 = j
j

n

 2
- 1

2j

n

  

 = 
 n n 


1

2
1 - (n-1) 

 = 
2

2

2

2 nnn



 

 = 
n n( )1

2
 

 

Plug these into our formula: 

 

(C1+C2+C3+C7)(n) – (C2+C3+C7) + (C4)( t jj

n

 2
) + (C5+C6)( t jj

n

 
2

1) 

(C1+C2+C3+C7)(n) – (C2+C3+C7) + (C4)( 
 n n 


1

2
1) + (C5+C6)( 

n n( )1

2
) 

 

Of the form (Constant1)(n2)  + (Constant2)(n) + Constant3 

 

 
runtime 

n 



This is a quadratic; an2+bn+c; the runtime will increase based on the square of the 

input. 

 

 

 

 

 

 

 

 

 

 

 

Average case is also quadratic. 

 

How much space does this take?  Sort is done in place, so just a few variables. 

This requires constant space. 

 

 

Function Growth 

 

 -notation : Gives asymptotically tight bound on a functions growth 

 

Definition: 

 

    g n f n c c n c g n f n c g n( ) ( ): , , : ( ) ( ) ( )    1 2 0 1 20 for all n n 0  

 

 

 

 

 

 

 

 

 

 

 

 

 

F(n)=3n   is   (n) since we can find g(n)=n, c1=1, c2=4. 

 

Insertion sort is not  (n2) since it is linear in the best case. 

However, average and worst case insertion sort is  (n2). 

 

 

 

 runtime 

n 

n 
0 

n 

f(n) 

c2g(n) 

c1g(n) 



 

O-notation: Big-O notation.  This gives an asymptotic upper bound. 

Definition: 

   O g n f n c n f n c g n( ) ( ): , : ( ) ( )   1 0 10 for all n n 0  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Insertion sort is O(n2).  Tight upper bound in the worst case, loose in the best case. 

Looser:  O(n3), O(2n).   

Use little-o notation if you know that it is a loose bound. 

o(n3) if f=n2. 

 

 - Omega notation.  Omega provides an asymptotic lower bound. 

Definition: 

    g n f n c n c g n f n( ) ( ): , : ( ) ( )   1 0 10 for all 0nn   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (1) – Constant time, this is a trivial lower bound for most cases. 

For insertion sort,  (n) : linear time is the best possible 

 

n
0

n

f(n)

c1g(n)

n
0

n

f(n)

c1g(n)



Running Time Comparison: 

 

   n=10  n=100  n=1000  n=10000 

 

lg(n)  2  5  7  9 

n  10  100  1000  10000 

n(lg(n)) 20  500  7000  90000 

n2  100  10000  1,000,000 100,000,000 

2n  1024  1.3x1030 huge  very huge  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

For comparison: estimate of the number of atoms in the universe is about 1080 (i.e. about 

2270). 

 

 

One of the tools we will use for analysis and solutions is Divide and Conquer  

 

Recursive approach to solve problems.   The idea is to break the problem up into sub-

problems with the same solution, but smaller size.  Solve these problems recursively, then 

combine the sub-solutions to solve the original problem. 

 

Divide – into sub-problems 

Conquer – Sub-problems recursively 

Combine – Sub-problem solutions to original problem 

 

Let’s look at Merge Sort: 

 Divide n elements into two subsequences to be sorted of size n/2 

 Conquer – sort subsequences recursively with merge sort 

 Combine – merge sorted subsequences into big sorted answer 

Need termination criteria for recursion – 

 Quit if sequence to sort is length 1  

 

 

 

 

n 

log 

linear quadratic 

exponential 



Pseudocode: 

Merge_Sort(A,p,r) 

  If p<r then 

   q 
p r




2
 

  Merge_Sort(A,p,q) 

  Merge_Sort(A,q+1,r) 

   Merge(A,p,q,r) ; Merges A[p..q] with A[q+1..r] into A[p..q] 

 

Call with Merge_Sort(A,1,length(A)) 

q gets the median, merge left, right 

 

A[1…5…10] becomes Merge_Sort(A,1,5),  Merge_Sort(A,6,10) 

How do we merge? 

 

 A1:  1 5 8 30 31 50 

 A2: 2 10 11 12 15 

 

Combined: 1  2  5  8  10  11  12  15  30  31  50 

 

Easy to do; just start at the front of each array, compare the pointers, and put the smallest 

into a new array and then increment the pointer that was the smallest.   We can’t do this 

merge in-place though (using the original array storage location only) so we need to make 

a copy of the merged array and then copy it back to the original array. 

 

If n is the number of elements to merge, then it takes  (n) time to merge. 

 

Example: A= 1 5 3 7 11 8 2 4   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MS(A,1,8)   A=[1, 5, 3, 7, 11, 8, 2, 4]

MS(A,1,4)
MS(A,5,8)

MS(A,1,2)
MS(A,3,4)

MS(A,1,1) MS(A,2,2)

MS(A,3,3)
MS(A,4,4)

Merge(A[1..1], A[2..2])

A = [1, 5, 3, 7, 11, 8, 2, 4]

Merge(A[3..4], A[4..4])

A = [1, 5, 3, 7, 11, 8, 2, 4]

Merge(A[1..2], A[3..4])

A = [1, 3, 5, 7, 11, 8, 2, 4]

MS(A,5,6)
MS(A,7,8)

MS(A,5,5) MS(A,6,6)

MS(A,7,7)
MS(A,8,8)

Merge(A[5..5], A[6..6])

A = [1, 5, 3, 7, 8, 11, 2, 4]

Merge(A[7..7], A[8..8])

A = [1, 5, 3, 7, 8, 11, 2, 4]

Merge(A[5..6], A[7..8])

A = [1, 3, 5, 7, 2, 4, 8, 11]

Merge(A[1..4], A[5..8])

A=[1, 2, 3, 4, 5, 7, 8, 11]



 

How much work is done?  It’s the cost to split + the cost to merge. 

Let’s define T(n) to be the runtime for a problem of size(n).  This is called a recurrence 

relation, since it is recursively defined. 

 

Recurrence:  T n

n

T
n

n n
( )

( ),

( ),












  



















1 1

2
2

1
 

 

The 2T(n/2) comes from the divide, and the  (n) comes from the merge. 

Later we will show that Merge Sort is  (nlgn) in runtime by illustrating a number of 

techniques to solve these recurrence relations. 

 

Math Review 

 

 x - floor of x, round down 

 x - ceiling of x, round up 

 

lg(x) = log2 x 

ln x = loge x 

 

a b b a log
 

logc(ab) = logc(a) + logc(b) 

log
log

logb

c

c

a
a

b
   

logb (1/a) = -logba 

logba = 1 / (logab) 

a nb bn alog log  
 

iterated log : log(log n) = log(2)n 

This grows very slowly!  Almost the same as constant time. 

 

k n n n n
k

n

       


 1 2 3 4
1

2
1

1

2... ( ) ( )  

1
1

1

2

1

3

1
1

1 k n
n O n

k

n

      


 ... ln( ) ( ) (ln )   Harmonic series 

a a a ak k n
k

n

  


 1 0
0

      Telescoping 

 

There are some other summations we will use, but we’ll discuss them as we get to that 

part of the course. 

 

 



Monte Carlo Methods 

 

Throughout this class we’ll focus primarily on analytic methods to characterize 

algorithms.  However, there is another class of statistical/probabilistic methods that are 

commonly referred to as Monte Carlo algorithms. From 

http://mathworld.wolfram.com/MonteCarloMethod.html : Any method which solves a 

problem by generating suitable random numbers and observing that fraction of the 

numbers obeying some property or properties. The method is useful for obtaining 

numerical solutions to problems which are too complicated to solve analytically. It was 

named by S. Ulam Eric Weisstein's World of Biography, who in 1946 became the first 

mathematician to dignify this approach with a name, in honor of a relative having a 

propensity to gamble (Hoffman 1998, p. 239). 

 

Numerical methods that are known as Monte Carlo methods can be loosely described as 

statistical simulation methods, where statistical simulation is defined in quite general 

terms to be any method that utilizes sequences of random numbers to perform the 

simulation. Monte Carlo methods have been used for centuries, but only in the past 

several decades has the technique gained the status of a full-fledged numerical method 

capable of addressing the most complex applications.  The name “Monte Carlo” was 

coined during the Manhattan Project of World War II, because of the similarity of 

statistical simulation to games of chance, and because the capital of Monaco was a center 

for gambling and similar pursuits.  

 

Monte Carlo is now used routinely in many diverse fields, but has gained some of the 

greatest popularity in computer science and physics.  For example, consider a complex 

physical system (solar system, nuclear reaction, quantum chromodynamics, traffic 

patterns, etc.) that has been modeled through a series of pdf’s (probability density 

functions).   The behavior and interaction of the model with the input is often too 

complex to determine deterministically.  Instead, the system is simulated by running 

many trials using random inputs selected from a proper range.   The resulting output 

helps us learn about the outputs of the system and the complexity of the system. 

 

As another example, the merge sort example we previously covered could be analyzed 

using a monte carlo method by randomly selecting inputs, running the algorithm, and 

measuring the runtime (or the number of comparisons).  By averaging out the average 

runtime, we could determine that merge sort is a  (nlgn) algorithm. 

 

http://mathworld.wolfram.com/MonteCarloMethod.html

