

Password entry scheme resistant to eavesdropping

Bogdan Hoanca1 and Kenrick Mock2
1Computer Information Systems, University of Alaska Anchorage, Anchorage, AK, USA

2Mathematical Sciences, University of Alaska Anchorage, Anchorage, AK, USA

Abstract - We propose an authentication scheme resistant
to eavesdropping attacks. Users select an alphanumeric
password with a length of 9-15 symbols. They can use this
password in the traditional manner from a secure client.
The same password can also be used from a non-secure
client in a manner highly resistant to eavesdropping
attacks. Although more complex than traditional password
entry, in our tests 11 out of 13 users had overall success
rates of 80% and above, and 12 of the 13 users had 100%
success rates after the initial learning stage. The average
authentication time is 1-2 minutes, depending on the
password length. Like all similar authentication schemes
reported to date, this scheme is too cumbersome for general
use, but could be useful for special situations and with
motivated users.

Keywords: Authentication, eavesdropping, shoulder
surfing, peeping attacks.

1 Introduction
 Mobile users often need to authenticate from non-
trusted clients to trusted remote servers. In such situations,
passwords are extremely vulnerable, because a shoulder
surfer or key logger on the client can capture the password
and give the attacker full access to the user’s remote
account. Other authentication mechanisms such as trusted
hardware or biometric sensors are not widely available. One
solution is a password scheme that allows authentication
without disclosing the password to a key logging attack.

We propose a scheme that allows the user to enter a
traditional password in a trusted environment and to enter
the same password in a secure manner from a non-trusted
client. The ability to use the same password in secure and
non-secure environments is critical given the user’s limited
ability to recall passwords [1].

While some work has been done on passwords that are
resistant to shoulder surfing [2,3] or to general
eavesdropping attacks [4], only one approach allows the
reuse of the same password in both secure and non-secure
environments [5,6]. However, this approach requires gaze-
tracking hardware and is only resistant to shoulder surfing
attacks. Our scheme allows the reuse of the same password
in secure and non-secure environments with general-purpose
hardware.

A common characteristic of all schemes proposed to counter
eavesdropping attacks [2-4] is that they are much more
complex and time consuming than the traditional password
interface. For this reason, we do not view our scheme as a
replacement for traditional password authentication. Only in
non-secure environments where there are no other options
and only with motivated, savvy users is the scheme expected
to be practical. Users must understand and accept the
tradeoff in complexity and authentication speed in exchange
for increased security. It is unlikely that our proposed
scheme will ever be used on a large scale by the general
public, for example in e-commerce applications. This
scheme is more likely to be used by James Bond than by Jim
Doe.

2 Related Work
 Password-only authentication schemes able to
withstand eavesdropping attacks were first mentioned in
1969 by Hoffman [7], but only detailed two decades later in
a paper by Matsumoto and Imai [8]. This work and all
subsequent approaches reported in the literature rely on
requiring the users to carry out a simple hashing function in
their head. The hashing function combines a shared secret
(known to both the user and the authenticating server) with
random information displayed on the computer screen
(known to the user, the server and to any attacker observing
the authentication session). The nature of the hashing
function makes it difficult for the observer to extract the
shared secret from the known user response and the known
random component. Also, because the correct answer
incorporates both the shared key and the random
component, the user input from one session cannot be used
to authenticate in another session that uses a different
random component.

Matsumoto’s initial work [8] set the theoretical basis for
several protocols that are resistant to eavesdropping that are
based on mathematical operations or on tracing a path on a
map. The most effective attack strategy involves collecting
user authentication information across several sessions,
using this data to narrow down the space of possible
passwords, and then attempting a brute force attack on the
remaining password space.

More recently, Sobrado et al. [9] describe a scheme based
on spatial relationships that requires the user to visualize
geometrical shapes. The password is a set of graphical

symbols that are displayed in random order on the computer
monitor. To authenticate, the user must click inside the
convex hull determined by the chosen symbols. To achieve
sufficient confidence in the identity of the user, several
correct click sessions are required for any authentication
session. The scheme underwent many generations of
improvements to eliminate inequalities in the probability
distribution of the correct click location (which has
implications on the security of the scheme). In its latest
form, the scheme was reported in a recent paper by
Wiedenbeck et al. [3]. Study results indicate success rates
above 90% for authentication sessions for all users, and 98%
for individual click sessions in the authentication process.
Reportedly, many of the authentication sessions failed
because of a single failed click session. The time required
for the authentication was significantly longer than for the
conventional password: an average of 10 seconds per click
session, which translates in times of up to a minute for a
password requiring 6 clicks.

One major drawback of the scheme is that the chosen
symbols are rather difficult to distinguish from each other,
and that they are not similar to a typical user password.
Zhao and Li [10] extended this system so that it may be used
with alphanumeric characters chosen from a traditional
password instead of graphical symbols.

Another authentication procedure resistant to shoulder
surfing is based on mathematical operations (e.g. requiring
the user to perform modular arithmetic), and published in a
paper by Hopper and Blum [11]. Although this work is
widely cited, it does not include a usability component.

Finally, a proposed scheme based on combinations of
graphical objects and alphanumeric characters [4] include
only a brief mention of the usability study. Users were able
to start using the scheme within 15 minutes of the initial
exposure.

A common drawback of all the proposed schemes is that
they require additional cognitive effort on the part of the
user, and that the authentication time is longer than
traditional password schemes. The added cognitive load is
required to perform the hashing operation in the user’s head,
and the longer time results directly from the increased
cognitive load.

Reusing the same text-based passwords in a traditional
password entry scheme and in a scheme resistant to
eavesdropping attacks increases usability, because it reduces
the number of different passwords a user must memorize.
We present the user interface and the usability of such a
scheme in the remainder of this paper.

3 Proposed Scheme
 We propose a password entry scheme that will allow
the reuse of the same password in conventional

authentication (when using a secure computer) and in a
manner that is highly resistant to eavesdropping attacks
(when using a less secure client computer). The scheme we
propose has several direct advantages. First, users do not
need to remember additional passwords to authenticate from
non-secure clients. Second, the password format required by
our proposed scheme forces the user into choosing a
“strong” and relatively long password, yet makes the
password relatively easy to memorize.

When using our scheme from a non-secure client, we
assume that the user input to the computer can be
monitored, recorded and later processed by the attacker
using unlimited computing power to extract the user’s
authentication information. This situation is very different
from the usual applications of encryption, where both the
user and attacker have access to computing power. This
same advantage of the attacker makes it very difficult to
design a user interface that is simple, easy to use and that at
the same time has any ability to protect against the attacker.

3.1 Shared secrets to resist eavesdropping
 The approach we take to protect the authentication
information is to use a simple problem that the user can
solve using only mental power. The problem is based on a
secret shared between the user and the authentication
computer. For an authentication session, the user input is a
function of the problem displayed on the screen and the
shared secret, which the attacker does not know. Key to this
scheme’s operation is that, given a problem on the screen,
multiple values of the shared secret may lead to the same
user input.

As a simple example of this approach, consider a shared
secret that consists of the letters “ABC”. The screen
displays the entire set of possible alphanumeric symbols
with a random choice of background (either white or dark)
for each symbol. The user input requested might be the
number of symbols that are displayed using a dark
background, which in this example will be a number
between 0-3 depending on the random background colors.
Given only this number as the user input, the attacker may
find many possible sets of symbols that meet the
requirement, and would have no way of knowing which of
the sets is the shared secret.

The authenticating server can easily verify whether the user
input is compatible with the shared secret. There is no way
to know whether the user actually knew the shared secret, or
whether some randomly generated input happened to match
the expected input. The confidence in the user’s identity can
be increased by repeating the process. If the user is able to
solve several successive problems consistent with the shared
secret, the probability of a random guess can be made
arbitrarily small at the expense of a longer authentication
session.

The attacker has access to the problem displayed on the
screen and to the user response. Based on this information,
the attacker can reverse engineer the user’s input to
determine a set of possible values for the shared secret. The
security of our scheme rests on having sufficiently many
elements of this set. One way for the attacker to narrow
down the set of possible shared secrets is to gather user
input over several authentication sessions.

3.2 User interface considerations
 An important consideration in the usability of the
interface is the cognitive load involved in determining the
user input, given the shared secret and the displayed
problem on the screen. A very simple input (for example,
binary valued) is easier to calculate, but gives only 50%
assurance that the user actually knows the secret. This
requires a large number of repeated trials to ensure high
confidence in the authentication. The likelihood that the user
will make a mistake increases with the number of trials,
overall reducing the chance that the user will authenticate
correctly. Additionally, a large number of trials implies a
long authentication time.

A similar consideration applies to the complexity of the
shared secret involved. A more complex shared secret is
more difficult to guess, but the user will have a more
difficult time recalling it and operating on it to determine the
required input in response to a problem on the screen. A
simpler secret allows the attacker to guess more easily.

In a balance of these conflicting requirements, our proposed
scheme uses a longer shared secret. We force users to
choose shared secrets composed of several triplets of
alphanumeric symbols. For each triplet in the shared secret
the user must determine the required input, which is another
alphanumeric symbol.

3.3 Design rules for creating a shared secret
 Our scheme requires that the shared secret consist of
an integer number of triplet symbols. In a secure
environment, this shared secret is entered as the user
password. From a non-secure client, the user will enter one
symbol for each triplet using the technique described in
section 3.5.

One way to create a shared secret consisting of easy to recall
triplets is to choose a series of 3-5 words each containing at
least three letters. The shared secret could be a series of the
first three letters in each word. The words can form a phrase
or may be in a series that is easy to recall for the user. For
example, if starting with the phrase “maintain your
password secure,” the resulting password would be
“maiyoupassec” to authenticate from a secure machine. The
triplets to authenticate from a non-secure machine would be
“mai”, “you”, “pas”, and “sec”. Such passwords are
generally accepted as difficult to guess [12], unless the user

chooses a very common phrase. This approach ensures that
each triplet has meaning independent of the rest of the
shared secret. Users can hold in their mind one triplet at the
time and determine the corresponding entered symbol.

Each triplet corresponds to only one correct entered symbol,
but each entered symbol could have been determined from a
number of different triplets. In our proposed scheme, if the
interface has N possible symbols then the number of
possible triplets for a given “entered symbol” is N2 (see
section 3.6). For a usable interface, this must be a small
number. The protection afforded by this small number is
that an attacker cannot tell which of the different possible
triplets is part of the shared secret. Most accounts would
lock out if the attacker attempts a brute force attack of all
possible triplets.

3.4 User interface
 In our experiment, only lowercase letters and digits are
displayed in random order on a grid of 6x6 symbols. For
added security, the scheme could use a larger set of
characters, for example both lowercase and uppercase
letters, digits and other characters. However, a larger set of
symbols would make it more difficult for the user to locate
the “password triplet symbols” on the grid. Another
disadvantage is that letters would either be capitalized at the
start of the word (i.e. the first letter in the triplet), not at all,
or in a manner that would require additional recall effort on
the part of the user. Although we chose to use a square 6x6
grid, the grid does not need to be square.

3.5 Determining the “entered symbol”
 To authenticate, the user enters one “Entered symbol”,
which we refer to as E, for each group of three consecutive
symbols in the “Password Triplet Symbols”, which we refer
to as PTS. The symbol E is such that it completes a
parallelogram on the displayed grid with the PTS. Given
any PTS on the grid, there are three different parallelograms
that could be formed. Of these three parallelograms, the user
must choose the one parallelogram where E is located
diagonally opposed to the first symbol in the PTS. To select
E the user clicks on the button displaying the symbol or
could enter the symbol via the keyboard. The process is
shown in Figure 1.

Figure 1. Selecting the Entered Symbol “9”, for three
Password Triplet Symbols, “0v2”.

In Figure 1 the triplet is “0v2” and the fourth symbol to
complete the parallelogram is the circled “9”. The
highlighted parallelogram on the PTS is shown in the figure
only to illustrate the scheme, but is not displayed in the
actual user interface.

We expect some readers may feel rather confused about the
explanation above. Fortunately, there is a sequence of
simple rules that can be followed to locate E. Given three
alphanumeric symbols, start at the first symbol and count
the distance in rows (up or down) and in columns (left or
right) to the second symbol. Then, starting at the third
symbol, count the same number of rows/columns and in the
same direction as before (up or down, and right or left). In
Fig. 1, the first symbol is “0”. The second symbol, “v”, is
two columns to the left and two rows above the first symbol.
To locate E we start at the third symbol, “2”, and count two
columns left and two rows up resulting in “9”.

In some cases the location of E will fall outside of the
displayed grid. When this occurs the user must visualize the
displayed grid as a torus that wraps around the edges. An
example is given in Figure. 2. The password triplet symbols
set is “5oh.” If the grid were to extend beyond the
alphanumeric squares, then E would be the top position in
the second column, two positions above the “h”, as
indicated. Since there is no button at this location, the user
must visualize wrapping the top of the grid back to the
bottom (forming a torus) and must click on the “y”.

Figure 2. Illustration of the scenario where the entered
symbol determined by the password triplet symbols
falls outside of the grid of symbols displayed.

3.6 Capability to withstand eavesdropping
 We assume that an eavesdropping observer will have
full access to the user input to the computer (through a key
logger or screen recorder on the user’s computer). The
attacker may record several authentication sessions and
correlate user entered data across all sessions captured. This
is the worst case, a case often ignored or dismissed in the
literature.

The position of E is dependent on the positions of the PTS.
Because these three PTS will be displayed in a different

position on the grid every time the user authenticates, E will
likely be different for each authentication session. Thus, an
attacker must record a large number of authentication
sessions to see a repeated arrangement of the PTS. The total
number of configurations of the 6x6 grid is of the order of
36! (reduced by the possible symmetries), making it
unlikely that the attacker can expect to see an identical
configuration in a reasonable time frame.

For the proposed scheme each E is a function of the same
three PTS. This “decouples” the password, and allows the
attacker to solve for each PTS set separately. Fortunately,
for any given E selected by the user there is a large number
of PTS that could have determined the selection of that
symbol. The degrees of freedom are the positions of two of
the symbols in the triplet (the third one is uniquely
determined by the position of the first two symbols and the
one selected by the user). With two degrees of freedom in
an array of 36 symbols, the number of possibilities is 36*36
= 1296.

Armed with only the knowledge of where the user clicked in
one particular authentication session, the attacker will not be
able to authenticate in place of the user in a subsequent
session. Indeed, the next time the attacker attempts to log in,
the distribution of symbols on the log in screen will be
different than in the previous session. The new arrangement
of the PTS in the grid will correspond to another E and the
attacker will need to know the actual triplet, not the
previously selected symbol to authenticate at this time.

However, the strength of the scheme is limited under repeat
observations. An attacker who records multiple
authentication sessions, each with a different, random
distribution of symbols on the screen will know that the
actual triplet of password symbols is in the intersection of
possible “triplet password symbols” leading to the E
observed in the authentication sessions. For a given E in one
session, the number of possible triplets that could have led
to that symbol is 1296. If the attacker observes the same E
across two sessions, the number of possible triplets that
could have led to the two “entered symbols” is reduced to
36. For three or more sessions, the attacker can on average
determine the exact triplet in the password.

The situation in reality is not as dire as this summary
analysis might indicate. First, each password will comprise a
series of 5-8 E values that correspond to the same number of
PTS sets. To uncover the user password, the attacker will
need to observe E in several sessions, and will need to run
the intersections above for each set of PTS. The level of
sophistication required to mount such an attack is
significantly higher than that required by current phishing
attacks. This complexity will lead to a decrease in the
number of attacks, but will not deter all attackers.

There are several solutions to handle the determined
attackers that might target the limitations of the proposed

scheme. Because the vulnerability arises when the same
attacker is able to capture several successful sessions from
the same user, one protection mechanism is for users to not
use the same non-secure computer to log in more than once.
As a second solution, the scheme can be made more secure
(although even less user friendly) by using 4-tuples or 5-
tuples to determine the click symbol. The cognitive load in
such cases would be even greater, which limits the
usefulness of such an approach. Finally, a third approach
allows the user to make errors in the authentication session.
Such a “noise” component will i) make it significantly more
difficult for the attacker to uncover the PTS corresponding
to the observed E symbols, ii) make it easier for the user to
authenticate (if the system tolerates some of the user errors)
and iii) only slightly increase the authentication time for a
given confidence level.

In order to achieve the benefits described above in terms of
resistance to attack, the proposed password entry scheme
requires a significantly increased cognitive load on the users
when compared to the conventional password entry scheme.
In addition to the challenges to recall the password, users of
our proposed scheme will need to be able to segment the
password in groups of three symbols and recall which group
they are currently dealing with.

To assess the challenges imposed by our scheme we
conducted a small usability study that examined the ability
of users to locate the correct “entered symbol,” given a
triplet in the password.

4 Experimental Methodology
 A total of 20 users were invited to participate in the
main study. All users were contacted by email and sent a
personal access code that allowed us to identify their data.
Users were asked to test the software as a favor, and not to
spend more than 30 minutes on testing, regardless of the
outcome of the testing. No incentives were offered for
completing a certain number of sessions, nor for achieving
higher accuracy. Users were advised to practice the scheme
only until they felt comfortable with it.

In the email contact users were directed to follow a link to a
web site where the authentication scheme could be tested
online. The web site includes a validation screen (where
participants were instructed to enter their access code) and a
usage scenario of logging into a secure server from an
unfamiliar Internet café as motivation for the scheme.

Out of the 20 users invited to participate in the study, 13
provided data. According to personal follow-up questions,
the other users did not get a chance to even consider the
application. Almost all 13 users are college students or have
completed college, and four have doctoral degrees. They all
use computers at work and have a wide range of levels of
familiarity with computer technologies, but none of the
users had been exposed to our password application before

the study. Many of the users were not “techies,” but rather
administrative staff, techno-phobes, or health care workers.
Five of the users are male and eight are female. The mean
age is 41 years, and the age range is 24-62.

The users were given the following instructions and a
graphical example similar to Fig. 1: “Given three
alphanumeric symbols, count from the first symbol to the
second symbol -- the distance in rows (up or down) and in
columns (left or right). Then, starting at the third symbol,
count the same number of rows/columns and in the same
direction as before (up or down, and right or left). “

For each user attempt, the computer generated a random
“password triplet symbols” set and displayed this set on the
screen, along with a random grid of 6 x 6 buttons with
lowercase letters and digits. The user was instructed to
locate the appropriate button with the “entered symbol” and
to click on it. We collected the timestamp of the moment
when the “entered symbol” was selected, as well as
information about the correct symbol and the actual symbol
selected. Because most of the attempts occurred in
sequence, we used the difference between timestamps as a
measure of the time users spent authenticating.

5 Results
 Most users found the scheme difficult to understand at
first, but they quickly learned to locate the “entered symbol”
for a given triplet. In the discussion below, each triplet entry
point counts as one authentication session (the analog of the
click session in Wiedenbeck [3]). In practice, a secure
password would require 3-5 triplet points, corresponding to
the 3-5 words that make up the password. Having to handle
several triplets in sequence will likely further reduce the
figures of success rate we report and further increase the
login time.

Summary data for all users is included in Table 1. Among
the 13 users, only one had an overall success rate below
50% (49% for User ID 6 in the table).

The time users took to complete each authentication attempt
is significantly longer than the typical 2-10 seconds it takes
to type in a traditional password. Users took an average of
20 seconds per triplet, similar to time reported by
Wiedenbeck [3]. The range of authentication times is 10-30
seconds per triplet. In a practical situation, for a password
requiring 3-5 clicks, a user would need to spend between 30
seconds and 2 minutes to validate their password. This is an
acceptable value for users according to Wiedenbeck [3] (ten
seconds per click session) and Tan et al. [2] (50 seconds for
an average password). Even if the time is too long for daily
use, it might be acceptable for authenticating from a non-
secure client.

It is reassuring that some of the users were able to
authenticate in a much shorter time than the average. In

some cases users took less than one second per triplet and
almost all users were able to correctly choose at least some
of the click points correctly in 10 seconds or less. User #10
required an average of 10.3 seconds per triplet.

There was some statistical correlation between average time
and success of the authentication. We ran a paired t-test
comparing the mean times for all sessions with the mean
times for only the successful sessions for each user. The
difference was 0.5 seconds (p=0.098). Interestingly, the
average time for correct attempts was shorter than the
average time for all attempts.

User ID #7 provided close to 200 click points, allowing us
to see a trend in decreasing authentication time. As shown in
Figure 3, there is a trend for the authentication time to
approach 10 seconds, although this user initially started with
much slower authentication times. The overall average time
for the user is 13.9 seconds.

Figure 3. Time per click in seconds for a “high
persistence” user. Actual times displayed are clipped
at 80 seconds.

We attribute the low initial authentication times (bottom left
corner of Figure 3) to attempts to understand how the data
entry worked. It is unlikely that the user actually considered
the possible click point, given the extremely short

authentication time taken. The success rate is close to zero
for these initial points.

We expected a rather steep learning curve, so we focused on
the success rate after sufficient learning has occurred, not on
how quickly users would be able to master the scheme. Our
data indicates that after the initial learning period most users
do achieve almost error-free performance. To quantify the
situation we measured success for the last 10 attempts; all
but two of the 13 users achieved 100% success rates. The
other two users had 90% and 80% accuracy, respectively for
these last 10 attempts. Choosing a different metric, for
example the success in the last 5 or 15 attempts leads to
similar results. Notably, User ID #6 with an overall success
rate of 49% has a 100% success rate over the last 10
attempts.

What would matter in a realistic authentication scenario is
whether users would be able to sustain good accuracy in
selecting the entered symbols, E, over several sessions. To
measure this, we averaged the user success rate over a
sliding window of 10 consecutive attempts. The last row in
Table 1 shows the number of attempts each user took to
achieve a windowed success rate of 100%. This 100%
windowed success rate is reached when the user is able to
achieve a series of 10 consecutive successful E’s in a row.
Clearly, each user must have at least 10 attempts for such a
metric to be defined. The metric is relevant, because a user
who can select 10 consecutive E’s correctly is able to
authenticate with reasonable accuracy if the password
includes 3-5 entered symbols. For clarity, the entries in the
last row in Table 1 are measured after the 10th attempt. For
example, User ID #3 achieved 10 correct sessions as soon as
completing the 10th attempt (all ten first attempts were
correct). Seven of the users achieve 10 consecutive correct
entries within three attempts of their 10th. Another group of
four users reach 100% windowed success within 10-25
attempts past their first 10, and a group of two “laggards”
take more than 50 attempts to reach 100% success.

User ID 1 2 3 4 5 6 7 8 9 10 11 12 13
Nbr. attempts 53 34 25 19 10 76 195 66 81 60 18 21 11
Nbr. successes 51 28 25 16 8 37 171 60 64 60 16 20 11

Success rate 96% 82% 100% 84% 80% 49% 88% 91% 79% 100% 89% 95% 100%

Mean time per
click [s] 18.6 18.9 21.8 33.7 20.5 20.3 13.9 16.8 19.5 10.3 27.9 24.1 18.1

Stdev./click [s] 9.5 12.1 10.8 17.1 7.0 14.6 10.1 6.5 10.8 2.8 15.6 10.7 11.5
Total time
spent [min] 15.2 9.5 8.0 7.9 2.7 22.4 44.1 17.1 25.3 10.1 7.5 6.8 3.0

Success rate
last 10 triplets 100% 100% 100% 90% 80% 100

% 100% 100% 100% 100% 100% 100% 100%

First series of
10 successes 3 20 1 2 n.a. 58 24 18 52 1 3 10 1

Table 1. Summary of results for all 13 users

For all users, the success rate windowed over 10 consecutive
attempts is a function that reaches 100% relatively fast,
within at most 50-60 entries, and for some users even from
the first few tries. This windowed success rate does not go
up monotonically, but once it reaches 100% it remains
above 70% for all users. This indicates that users have
different learning speeds, but that once they “get” the
scheme, the error rate is relatively low.

6 Discussion
 Based on observations to date, the proposed password
entry scheme has the potential to be usable among well-
trained, savvy, and well-motivated users. All users found the
scheme difficult at first, but once users learned how to apply
the counting technique, “it all clicked in” and the process
appeared much easier.

The ability to recall a password is a critical factor for
authentication schemes, and many users have difficulty with
strong passwords [13]. Our scheme compounds these
difficulties with the need to recall the actual authentication
scheme. We do not have any data yet on how well users’
ability to use the scheme can persist over time. Given the
reported experience with understanding of the scheme
“clicking in,” we expect the scheme to be memorable.

7 Conclusions
 Users who have to authenticate from non-secure
clients must understand that they need to trade off
convenience for security. We propose and evaluate a
scheme that allows users to authenticate with the same
password in a non-secure environment, without disclosing
the password to an eavesdropping attacker. To afford such
protection, the scheme is necessarily more complex, and
requires a longer authentication time. Informal interviews
with test users indicate that they find the authentication
scheme to be tedious, but usable.

Users found the scheme complicated at first, but reported
that it became easy to use after practice. For the scheme to
be practical, users must devote practice time in a secure
environment ahead of time. Our testing indicates that most
users can get comfortable and proficient with the scheme
within 30 minutes.

Both the high cognitive load and the lengthy authentication
time make the scheme unlikely to be widely adopted for the
general population, for example, authentication into e-
commerce applications. On the other hand, we expect the
scheme to be acceptable for specialized applications and
motivated users.

8 References
[1]. Tari, F., Ozok, A. and Holden, S. A comparison of
perceived and real shoulder-surfing risks between

alphanumeric and graphical passwords. Pittsburgh, PA, July
12-14 : ACM Press, 2006. Proceedings of the Second
Symposium on Usable Privacy and Security. pp. 56-66.

[2]. Tan, D., Keyani, P. and Dzerwinski, M. Spy resistant
keyboard: more secure password entry on public touch
screen displays. Canberra, Australia : s.n., 2005.
Proceedings of the 19th Conference of the Computer-Human
Interaction Special Interest Group of Australia. Vol. 122.

[3]. Wiedenbeck, S., et al. Design and evaluation of a
shoulder-surfing resistant graphical password scheme. New
York, NY : ACM Press, 2006. Proceedings of the Working
Conference on Advanced Visual Interfaces. pp. 177-184.

[4]. Man, S., et al. A password scheme strongly resistant to
spyware. Las Vegas, NV : s.n., 2004. International
Conference on Security and Management. pp. 94-100.

[5]. Hoanca, B. and Mock, K. Secure graphical password
system for high-traffic public areas. San Diego, CA : s.n.,
2006. Eye Tracking Research & Applications Symposium.

[6]. Kumar, M., et al. Reducing shoulder-surfing by using
gaze-based password entry. Pittsburg, PA : ACM Press,
2007. Proceedings of the 3rd Symposium on Usable Privacy
and Security, SOUPS '07. Vol. 229, pp. 13-19.

[7]. Hoffman, L.J. Computers and privacy: A survey. 2, s.l. :
ACM Press, 1969, ACM Computing Surveys, Vol. 1, pp. 85-
103.

[8]. Matsumoto, T and Imai, H. Human identification
through insecure channel. 1991. EUROCRYPT. pp. 409-
421.

[9]. Sobrado, L. and Birget, J.C. Graphical Passwords. The
Rutgers Scholar. [Online] vol. 4, 2002. [Cited: September
12, 2006.] http://rutgersscholar.rutgers.edu/volume04.

[10]. Zhao, H and Li, X. S3PAS: A Scalable Shoulder-
Surfing Resistant Textual-Graphical Password
Authentication Scheme. 2007. Proceedings of the 21st IEEE
International Conference on Advanced Information
Networking and Applications Workshops.

[11]. Hopper, N. and Blum, M. A Secure Human-Computer
Authentication Scheme. [Online] CMU Tech Report CMU-
CS-00-139. [Cited: February 14, 2005.]
http://www.andrew.cmu.edu/user/abender/humanaut/links.ht
ml.

[12]. Kuo, C., Romanosky, S. and Cranor, L. Human
selection of mnemonic phrase-based passwords. Pittsburgh,
PA : ACM Press, 2006. Proceedings of the Second
Symposium on Usable Privacy and Security (SOUPS '06).
pp. 78-78.

[13]. Sasse, M., Brostoff, S. and Weirich, D. Transforming
the "weakest link": a human-computer interaction approach
to usable and effective security. 3, July 2001, BT
Technology Journal, Vol. 19, pp. 122-131.

