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Abstract— Researchers have proposed systems in which users 

utilize an eye tracker to enter passwords by merely looking at the 

proper symbols on the computer monitor in the appropriate 

order.  This authentication method is immune to the practice of 

shoulder surfing: secretly observing the keystrokes of a legitimate 

user as he or she types a password on a keyboard.  In this paper 

we describe the EyeDent system—in which users authenticate by 

looking at the symbols on an on-screen keyboard to enter their 

password.  Existing eye-tracking based authentication systems 

require the user to dwell or press a trigger when looking at each 

symbol.  Instead, in EyeDent, gaze points are automatically 

clustered to determine the user’s selected symbols; this approach 

has the benefit of allowing users to authenticate at their natural 

speed, rather than with a fixed dwell time.  Additionally, the 

absence of a visible trigger does not divulge the number of 

symbols in the password.  Results from preliminary 

investigations indicate that quick (3 seconds for a 4 digit PIN) 

authentication is possible using this scheme, but more work is 

needed to account for calibration error, and to dynamically adapt 
system parameters to the characteristics of individual users. 
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I. INTRODUCTION 

Flawless identity management remains a critical and 
intractable problem, and is consequently the focus of many 
intensive research efforts.  Current security techniques are 
weak in general, because most are easily circumvented or 
fooled.  For example, a password can be compromised, 
cracked, or even just forgotten.  A hardware key can likewise 
be lost, duplicated, or stolen. 

Shoulder surfing is the name given to the practice of 
observing a legitimate user as he or she authenticates, to 
impersonate the legitimate user later.  Shoulder surfing can be 
done in-person, or can also potentially be accomplished using a 
simple, properly-positioned video camera. 

The nefarious threat of shoulder surfing can be virtually 
eliminated by literally taking the login out of the user's hands.  
When the user enters their password merely by looking at the 
appropriate symbols on the screen, instead of typing the 
symbols on a keypad, shoulder surfing becomes practically 
impossible.  This advanced authentication technique is possible 
to achieve using an eye tracker. 

In this project we developed the EyeDent system which 
presents an on-screen keyboard (or keypad) to the user, and 

allows the user to authenticate by looking at the symbols in his 
or her password in order.  By using an on-screen keyboard we 
maintain compatibility with traditional password schemes, 
which may still be used in secure settings such as one’s home 
or office.  The user-selected symbols are determined using an 
automatic clustering algorithm (described in Section III). 

We implemented EyeDent using an EyeTech Digital 
Systems TM3 eye tracker [1]; this is a remote eye tracker 
accurate to 0.5 degrees that tolerates head motion within a 25 x 
16 x 19 cm window.  Prior to developing EyeDent, we created 
an API wrapper in the form of a DLL that allows programs 
written in .NET languages such as C# to interface with the eye 
tracker using EyeTech’s QuickLink API.  The source code is 
publicly available under the MIT open source license at 
http://code.google.com/p/quicklinkapi4net/. 

II. RELATED WORK 

Many authentication approaches attempt to thwart shoulder 
surfing by obfuscating the shared secret between the user and 
the authenticating system with some random element [2].  For 
example, in the ColorLogin scheme, a user password consists 
of a set of icons known only by the user and the authenticating 
system.  Lines of icons are randomly displayed with an icon 
selected from the user’s password set and icons not in the 
user’s password set.  The user clicks only on the lines that 
contain icons in his or her password set.  A click only reveals 
that one of the icons in the line is a member of the user’s 
password set, but does not reveal which icon was recognized.  
Subsequent logins present a different set of generated icons to 
thwart a shoulder-surfer [3].  Such randomized schemes, in 
which users perform some mental computation, have been 
proposed by many researchers [4,5]; however, they are 
vulnerable to attack, if an attacker can record multiple 
authentication sessions.  In particular, an intersection attack 
involves looking for those icons that appear in repeated 
sessions; the attacker can eliminate icons that only appear in 
some of the successful login sessions, as those cannot be the 
icons in the user’s password [6]. 

Graphical implementations of passwords resistant to 
shoulder surfing have also been proposed.  In Sobrado and 
Birget’s scheme, the shared secret consists of a set of icons 
randomly distributed on the screen [7,8,9].  The user 
authenticates by clicking anywhere inside the convex hull 
define 
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d by the icons in the user’s password.  The attacker cannot 
easily find out which icons define the hull, because there are 
multiple possibilities for any given click point.  The scheme is 
easy to understand in principle, but has several weaknesses.  
First, locating the icons on the screen can be difficult, because 
several icons may look similar.  Second, the authentication 
process tends to be lengthy to avoid false positives, where a 
random guess matches the required entry.  Thirdly, even with a 
lengthy authentication process, the attacker has a relatively 
high chance of authenticating by randomly guessing at click 
points.  Finally, the scheme is still vulnerable to repeat 
observations and intersection attack. 

More recently, eye tracking technologies have been used 
for password entry to protect users from shoulder surfing 
attacks under the assumption that it is difficult for an attacker 
to correlate eye movements to symbols on the screen.  Hoanca 
and Mock proposed utilizing an eye tracker in combination 
with a graphical password [10].  Simpler techniques use eye 
gestures as passwords that decrease the authentication time, but 
at the cost of a relatively small password space (eight input 
strokes–or symbols), and still require users to recall and 
perform special tasks to authenticate [11]. 

In Kumar et al.’s approach, a user’s gaze is tracked while 
looking at an on-screen keyboard.  Successive symbols in the 
password are entered by dwelling on an on screen key, or by 
pressing a trigger key with a finger while looking at a symbol 
on the screen [12].  Kumar et al. found that the gaze + trigger 
method suffers from high error rates due to variance in eye-
hand coordination: some users press the trigger before looking 
at the target area or after leaving the target area.  To address 
this problem, researchers have implemented trigger correction 
algorithms, inserted focus points to attract gaze [13], and 
collected multiple gaze points while holding down the trigger 
key to calculate a gaze centroid [14,15].  

Both Kumar et al. [12] and Forget et al. [14] focused their 
efforts on dwell-time algorithms that require the user to 
consciously pause the movement of their eyes and continue to 
gaze at each symbol for a predetermined amount of time.  With 
the dwell based schemes, a shorter dwell time leads to less 
accurate authentication for those users that would naturally 
prefer a longer dwell time.  The matching approaches 
employed in this project overcome this limitation by analyzing 
the user's gaze pattern in a way that is more adaptive to the 
user’s natural gaze speed.  Finally, our scheme does not 
disclose the number of symbols in the password and the 
associated entry timing, as in Kumar et al.’s method, which 
requires a visually observable trigger, or an audio tone to cue 
users that a symbol had been entered. 

III. EYEDENT OVERVIEW AND DESIGN 

EyeDent presents a simple GUI with an on-screen keyboard 
in which the buttons are sized so the keyboard’s window fits 
within the width of the screen.  Each button on the keyboard is 
a large circle with a symbol in the center (Fig. 1).  The intent of 
this design is to draw the user’s gaze to the center of the circle 
representing each symbol [13]. 

EyeDent begins with a calibration step.  While we used a 
somewhat time-consuming 16-point calibration, a 1-step 

calibration or other faster version is also possible [14].  Once 
calibrated, the eye tracker settings are stored per user, and re-
calibration is not necessary, unless the eye tracker has moved 
with respect to the screen.  Next, as the user looks at the 
password symbols, EyeDent takes a constant stream of data 
from the eye tracker (30 samples per second), and places each 
data sample on a queue.  Each sample consists of the user’s 
gaze coordinates along with other information about their eye 
(see Section III-D, Data Logging and Average Error Analysis). 

To authenticate, a user must look briefly at each symbol in 
his or her password, without interruption, and in sequence; and 
then look at the END button to signal the completion of the 
process.  As each user has a longer or shorter dwell time on 
successive symbols, this protocol allows the user to follow their 
natural dwell time preferences, and also to look at different 
symbols (not in their password) without penalty, as long as the 
last set of symbols viewed matches the user’s password. 

Once the END button has been triggered, EyeDent stops taking 
new data, and processes the current queue of samples.  First, it 
partitions the data samples into clusters (see Sections III-A and 
III-B, Cluster Partitioning).  Next, it performs the password 
matching by using the location and temporal order of the 
clusters.  A cluster within a symbol’s circle triggers that 
symbol (see Password Matching).  EyeDent will then indicate 
whether the password was accepted or rejected. 

We compared the performance of two different clustering 
algorithms: one based on a fixed minimum number of points 
per cluster (Section III-A), and one based on a dynamic 
minimum number of points per cluster (Section III-B).  

 

Figure 1. A successful login on a numeric-style keypad with 

the password “9430”.  The small dots are individual gaze points.  The 

slightly larger circles are clusters.  The dashed lines aid our visual 

inspection by connecting the clusters to make the user’s gaze path 

obvious.  The dots and lines are not shown during actual authentication.  

Notice that some gaze points are recorded near symbol “1”, but too few 

points are recorded to constitute a cluster. 



 

 

A. Clustering – Fixed Minimum Points per Cluster 

The first step in the password matching is partitioning the 
data points in the input queue.  Groups of temporally 
continuous data points are lumped into clusters composed of 
points that lie close together. 

Our initial algorithm to aggregate the data points requires a 
minimum number of nearby gaze points to constitute a cluster.  
We begin with an empty cluster Cx, and then add the first data 
point Pn.  Then we examine the next data point Pn+1.  If Pn+1 is 
within a specified fixed threshold distance of the centroid of 
Cx, then Pn+1 is added to Cx, and we proceed to the next data 
point Pn+2; otherwise Cx is sealed and placed on a special 
queue, and then a new empty cluster Cx+1 is created with initial 
point Pn+1.  We proceed as we did with Cx, by adding points to 
Cx+1, and then Cx+2, and so on until all the data points are 
partitioned into clusters.  The process is depicted in Fig. 2.  

 

EyeDent allows configuration of the Minimum Points per 
Cluster (MPPC) parameter used during partitioning.  Clusters 
with fewer than MPPC points are not considered valid dwell 
points and are discarded.  By default, we set MPPC to 9.  At a 
rate of 30 samples per second, this implies a minimum dwell 
time of 0.3 seconds per cluster.  The Distance Threshold is also 
a configurable parameter that we set to the default value of 0.75 
inches.  To calculate the distance in inches on the monitor we 
explicitly enter the width of the screen in inches, which allows 
us to calculate pixels/inch based on the resolution setting.  

B. Clustering – Dynamic Minimum Points per Cluster 

We also experimented with an algorithm to dynamically 
calculate the Minimum Points per Cluster parameter.  The 
advantage of dynamically computing this parameter is that 
dwell time varies by user.  A fast user could look at a symbol 
for fewer than 0.3 seconds, which would be missed by the 
algorithm in III-A.  A slower user might dwell much longer, in 
which case unintended dwelling on non-password symbols 
would result in those symbols being counted in the user’s 
password entry.  

 Our initial analysis suggested that the cluster size typically 
follows a bimodal distribution with either small or large 
clusters.  The larger clusters generally correspond to the 
password symbols, while the small ones result from 
distractions or unintended dwell on non-password symbols.  
We used a hierarchical agglomerative clustering algorithm to 
find a threshold between the two peaks of the distribution. 

In this algorithm, cluster S is initially set to the smallest 
cluster, and cluster L is initially set to the largest cluster.  The 
algorithm iterates through every other cluster Ci, and calculates 
|Size(Ci) – AverageSize(S)| and |Size(Ci) – AverageSize(L)|.  Ci 
is then added into S or L respectively, whichever is closer.  The 
Minimum Points per Cluster parameter was then set to 
(AverageSize(S) + AverageSize(L)) / 2. 

C. Password Matching 

The actual password matching algorithm keeps two pointers 
as it operates: one pointer into the list of clusters Cx, and 
another pointer into the list of expected password symbols Sn.  
In each case, the pointers start at the end of the lists and 
progress toward the beginning, i.e., backwards.  If a cluster 
point Cx is located over a keypad button B, then the symbol for 
that button is compared to the next expected password symbol 
Sn.  If the symbol of button B is equal to Sn, then the cluster Cx 
is assigned to Sn, and we proceed to the next cluster Cx-1.  
Otherwise, we continue with the next expected password 
symbol Sn-1.  However, first we check the number of clusters 
assigned to symbol Sn.  If Sn contains 0 clusters, then the match 
fails immediately.  If the algorithm reaches the first symbol in 
the expected password (S0) without failing, and at least one 
cluster occurs on the symbol S0, the match is successful. 

Note that, if a cluster point Cx falls into the dead-zone 
between buttons, it is ignored (with one notable exception), and 
the algorithm proceeds to examine Cx-1.  The exception is that 
those dead-zone clusters are recognized as separators between 
multiple continuous occurrences of the same symbol within a 
password, e.g., the double “o” in the word “poodle”.  This 
algorithm treats temporally contiguous clusters that translate 
into the same symbol as a single occurrence of that symbol.   

D. Data Logging and Average Error Analysis 

During authentication, the average error is computed by 
performing a best-fit analysis of the clusters and password 
symbols.  The algorithm works in much the same fashion as the 
password matching algorithm, i.e., it matches clusters to 
password symbols (from back to front).  However, as the 
algorithm progresses, clusters are assigned to the user’s 
password symbols based on which symbol they are closest to, 
rather than which button they are on.  Then, the algorithm 
calculates the average distance (in inches) between the center 
of each symbol and the clusters we assigned to it.  Finally, the 
results of all of those calculations are averaged, and the final 
value is reported 

Although the Average Error value is a flawed metric (on its 
own), since it does not describe the specifics of the distribution, 
it does provides an approximate idea of just how far a login 
attempt was from being successful.  If the average error 
displayed is NaN (Not a Number), it means the attempt was not 

 

Figure 2. The clustering algorithm in action.  The point Pn+1 

lies outside the distance threshold for the cluster Cx.  The algorithm would 
seal cluster Cx, and make a new cluster Cx+1, with Pn+1 as its initial point. 



 

 

even close, because at least one symbol of the expected 
password was left without any corresponding clusters.  

To further aid in data analysis, every authentication attempt 
generates two log files.  The main log file contains the raw data 
from the eye tracker (the gaze point samples), in CSV text 
format.  This data consists of flags indicating if the eyes are 
found and calibrated, coordinates of the glint points in the 
camera image (the reflections from the tracker’s infrared 
lights), pupil diameter, and gaze coordinates on the screen.  
The secondary log file contains data about the analysis of the 
login attempt, and configuration information for the 
authentication session. 

IV. PRELIMINARY INVESTIGATION 

We have only conducted preliminary work to evaluate the 
algorithm.  In this section, we present results on repeated 
authentication attempts by the three authors on an 
alphanumeric keyboard layout.  The experiments were run on a 
desktop computer with a 19-inch screen width.  EyeDent was 
configured to display 1.3-inch diameter buttons, with 0.125-
inches of padding between each button.  Calibration was 
performed at the beginning of each session. 

We used a QWERTY layout for users to enter the password 
of “ZOMBIESQ”.  We specifically chose this password 
because it requires looking near all four corners of the virtual 
keyboard (where the eye tracker error is typically highest), 
includes symbols from all the letter rows, and has three 
symbols close to each other (i.e., “Z”, “S”, and “Q”).  Fig.3 
shows a screen capture of the layout for a successful 
authentication attempt.  We also tested a numeric keypad 
layout with the password “9430”.  

Our initial study used a fixed MPPC of 7, which resulted in 
successful authentication rates ranging from 35-75% by the 
three authors.  Many of the unsuccessful attempts were due to 

extra inserted characters in the entered password.  We 
calculated the average cluster size for the extra characters to be 
8.25, which was just barely above our chosen threshold of 7; 
this directly suggested that we could use a larger threshold, 
such as 9, to eliminate these errors.  Furthermore, the larger 
cluster size should not influence performance, since the 
shortest average dwell time for successful authentications was 
over 500ms, which corresponds to a cluster size of about 16 
points. 

A. Alphanumeric Password Entry, 9 MPPC 

Table I summarizes results for the scheme using a fixed 
Minimum Points per Cluster of 9.  The table displays the 
percentage of successful authentications out of N attempts, 
average total authentication time for the accepted attempts, 
average dwell time per symbol for accepted attempts, and 
average error per symbol (distance of cluster centroid from the 
center of the button).  

TABLE I.  “ZOMBIESQ” ACCEPTED AUTHENTICATION RESULTS 

 
Success Ave Total 

Time 

Ave Dwell 

Time 

Ave 

Error  

User 1 

(N=12) 
83% 7.3s 820ms 0.26” 

User 2 

(N=12) 
83% 7.9s 745ms 0.31” 

User 3 

(N=12) 
83% 5.8s 612ms 0.37” 

 
Table II provides further detail about the rejected 

authentication results.  Out of R rejected attempts, the 
percentage of rejected cases is broken down by single error or 
multiple errors.  The errors are categorized by cases M, W, and 
E.  Case M refers to the situation where a character is missing 
from the password.  For example, given the password of 
“ZOMBIESQ”, the entry of “ZOMBIEQ” (missing an “S”) is a 
case of a missing character.  Case W refers to the situation 
where a wrong character was substituted for a correct 
character; for “ZOMBIESQ”, the entry of “ZOMBUESQ” 
(“U” is substituted for “I”) is an example of this case.  Finally, 
Case E refers to the situation where an extra character is 
inserted into the password; for “ZOMBIESQ”, the entry of 
“ZOMNBIESQ” (an extra “N”) is an example of this case. 

TABLE II.   “ZOMBIESQ” REJECTED AUTHENTICATION RESULTS.  
M=MISSING CHARACTER, W=WRONG CHARACTER SUBSTITUTED, E=EXTRA 

CHARACTER, COMBO=COMBINATION OF M,W, OR E. NUMBERS IN EACH ROW 

ADD UP TO 100% (ASIDE FROM ROUNDING ERRORS) 

 Single Error Multiple Errors 

 M W E M W E Combo 

User 1 

(R=2) 
50%  50%     

User 2 

(R=2) 
     100%  

User 3 

(R=2) 
50%  50%     

 
The results from Table II consisted of consecutive 

authentication attempts performed in one session.  Under these 
circumstances, it seemed that establishing a visual rhythm 
based on short-term muscle memory might affect the results.  
To investigate long-term vs. short-term muscle memory, the 
investigators also performed a single daily authentication over 
five days.  User 1 successfully authenticated on the first 
attempt on four out of five days; the remaining attempt 
succeeded on the second try.  User 3 successfully authenticated 
on the first attempt on three out of five days; the remaining two 
attempts were successful on the second try. 

 

Figure 3. Alphanumeric keyboard layout showing a 

successful login attempt for the password “ZOMBIESQ”.    



 

 

B. Dynamically Calculated Minimum Points per Cluster 

The authors also attempted to authenticate using the 
password of “ZOMBIESQ”, but using the dynamic algorithm 
described in Section III-B to calculate the Minimum Points per 
Cluster (MPPC).  Results are given in Tables III through V.  
The authentication time varies since several users intentionally 
dwelled on symbols for a very short time or for a very long 
time to see if the algorithm would generate an appropriate 
threshold. 

TABLE III.  DYNAMIC MINIMUM POINTS PER CLUSTER - “ZOMBIESQ” 

ACCEPTED AUTHENTICATION RESULTS 

 
Success Range - Total 

Time 

Ave Error  

User 1 

(N=15) 
47% 3.9-13.5s 0.38” 

User 2 

(N=9) 
44% 7.4-10.9s 0.44” 

User 3 

(N=12) 
42% 5.1-17.0s 0.42” 

TABLE IV.  DYNAMIC MINIMUM POINTS PER CLUSTER  - “ZOMBIESQ” 

REJECTED AUTHENTICATION RESULTS.  M=MISSING CHARACTER, 
W=WRONG CHARACTER SUBSTITUTED, E=EXTRA CHARACTER, 

COMBO=COMBINATION OF M,W, OR E. NUMBERS IN EACH ROW ADD UP TO 

100% (ASIDE FROM ROUNDING ERRORS) 

 Single Error Multiple Errors 

 M W E M W E Combo 

User 1 

(R=8) 
38% 25% 25%    12% 

User 2 

(R=5) 
80%   20%    

User 3 

(R=7) 
14%   43% 29%  14% 

 

C. Numeric Password Entry, Four-Digit PIN, 9 MPPC 

We also tested used the password of “9430” on a numeric 
keypad layout (Fig. 1) to simulate entering a PIN at an ATM.  
Users 2 and 3 both had two single errors under case W. 

TABLE V.  “9430” ACCEPTED AUTHENTICATION RESULTS 

 
Success Ave Total 

Time 

Ave Dwell 

Time 

Ave 

Error  

User 1 

(N=12) 
100% 2.7s 652ms 0.32” 

User 2 

(N=12) 
83% 2.7s 557ms 0.50” 

User 3 

(N=12) 
83% 2.7s 627ms 0.31” 

 

V. ANALYSIS AND DISCUSSION  

A. Nine Minimum Points per Cluster 

Using the fixed MPPC of 9 each user achieved an 
authentication rate of 83% (see Table I).  Further improvements 
are possible.  First, a majority of the rejected authentications 
are due to single errors – a single character missing, inserted, or 

substituted.  If the authentication process were relaxed to allow 
a single error then the successful authentication rate would 
remain unchanged for user 2 but would rise to 100% for users 1 
and 3 (see Table II), but at the expense of a smaller password 
space.   

There were no errors where a single incorrect character was 
substituted in place of a correct password character (see Table 
II – case W).  This type of error would be expected if the eye 
tracker was poorly calibrated and a nearby symbol was 
erroneously entered instead of the actual gaze symbol.  The 
errors were case M where a character was missing from the 
password, or case E where an extra character was inserted into 
the password.  The case of the missing character suggests the 
user did not dwell on a symbol long enough to create a cluster 
– a problem that could potentially be addressed with a smaller 
MPPC.  The case of the extra character suggests a spurious 
cluster that was registered as the user searched or scanned the 
keys – a problem that could potentially be addressed with a 
larger MPPC.  None of the authentication attempts included 
both missing and extra characters.  These errors could not be 
addressed by adjusting the MPPC. 

User 1 experienced the lowest average error (see Table I) – 
defined as the average distance of the cluster’s centroids from 
the actual center of their associated buttons.  This may be due 
to environmental circumstances (e.g., better camera focus) or 
user behavior (e.g., head remained more motionless resulting in 
better accuracy).  However, each user’s error was within the 
cluster distance threshold of 0.75 inches. 

Finally, the authentication rate appears similar when 
authenticating once daily compared to authenticating 
sequentially in the same session.  This implies that short-term 
muscle memory controlling the eye does not play a significant 
factor in authentication success. 

B. Dynamically Calculated Minimum Points per Cluster 

The scheme to dynamically calculate the MPPC has the 
potential to alleviate some of the errors encountered by the 
static scheme.  However, as shown in Table III and Table IV, 
the algorithm needs improvement, because the success rate was 
much lower.  However, if single errors are allowed the success 
rate increases to 93%, 89%, and 50% respectively.  User 3 
experienced many errors due to a MPPC value that was often 
too large; as a result, multiple valid clusters were discarded. 

Despite the errors, there are some promising results where 
the algorithm performed as expected.  The total authentication 
time in Table III is given as a range, because users tried 
authenticating both quickly and slowly.  For example, in Table 
III, user 1 authenticated as quickly as 3.9 seconds, and as 
slowly as 13.5 seconds.  The 3.9-second authentication had a 
MPPC of 5, and is approaching the authentication speed of a 
keyboard.  During the slow authentication, the user was able to 
look at non-password symbols quickly, but they were discarded 
due to the longer dwell time on the password symbols.  

A more sophisticated analysis of the cluster size histogram 
should lead to a better MPPC, and thus improve the 
authentication results.  For example, rather than assume a 
bimodal distribution, we might check for a normal distribution 
and if found then set the MPPC to a value below the median.  



 

 

Another possibility is to use the cluster size of correctly 
matched password symbols to help determine an appropriate 
MPPC.  For example, if the first symbol in the password is “Z”, 
and the log begins with 15 samples in the vicinity of the 
symbol “Z”, then 15 might factor into the MPPC threshold 
calculation for the other symbols. 

C. Numeric Password Entry, 9 MPPC 

As expected, authentication was more successful and 
quicker using a short 4-digit PIN on the numeric keypad layout 
than the longer password on the QWERTY layout.  Three of 
the four errors resulted from dwelling on a blank area outside 
the keypad symbols – a more likely situation than the 
QWERTY layout due to the fewer number of symbols.  In this 
case, we could likely eliminate some of these errors by 
mapping clusters outside the keypad to the closest symbol.   

VI. CONCLUSIONS 

The goal of EyeDent is to authenticate users via eye 
tracking without the need for special triggers or predefined 
dwell times.  Our initial results suggest that this goal can be 
achieved.  Using a fixed Minimum Points per Cluster of 9 
resulted in mostly successful authentication attempts by the 
authors.  More work needs to be done to determine if this 
success translates to general users and to account for 
calibration error, accuracy, and variation in user dwell times.  
Our results indicate that dynamically determining the 
Minimum Points per Cluster does support user variation in 
dwell times, but more work is required to adjust the algorithm 
to increase the authentication rate.  A dynamic algorithm would 
also improve portability to other eye trackers with a different 
sampling rate.  A related topic for consideration is a more 
optimal clustering algorithm than the greedy in-order clustering 
algorithm shown in Fig. 2. 

Other considerations include an allowance for single errors 
or probabilistic acceptance based on distance from the target 
symbol instead of a discrete match of clusters to symbols.  For 
example, if the mean squared error of all authentication points 
is within a threshold, then the algorithm might deem the 
attempt as successful.  This could allow a cluster to be far from 
its target if all other clusters are close to their target.  

Another item for future work is to compute the MPPC from 
our log data that maximizes success and minimizes error and 
see how it compares to the selected value of 9. 

Finally, in this project we performed a separate calibration 
step before performing authenticating.  One approach to 
integrate calibration into the authentication process is to 
highlight different buttons on the virtual keyboard.  This would 
also have the benefit of calibrating specifically for the 
keyboard being displayed while familiarizing users with the 
layout.  It may also be possible to eliminate calibration, if the 
raw glint data from the eyes can be proportionally mapped to 
the same vector motions that the eyes would make when gazing 
at symbols in the password. 
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