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Abstract 
 
This work investigated three techniques to automatically cluster a collection of 
documents: Word-Intersection with GQF, Word-Intersection with hierarchical 
agglomerative clustering, and TreeClustering.  The Word-Intersection algorithms have 
been previously described in the literature while the TreeClustering technique is novel to 
this work.  The TreeCluster algorithm idea comes from rule induction techniques and is 
used to generate a shallow tree of clusters that a user can browse.  This algorithm is also 
O(n) when used with a fixed tree depth, as opposed to O(n2) as the other two algorithms.  
Experimental results on a collection of Mail and Web documents indicate that the 
agglomerative clustering algorithm performed the best, but also the slowest.  The GQF 
algorithm performed well on the Mail domain, but performed poorly on the Web domain 
without tuning to its heuristic.  The TreeCluster algorithm performed reasonably well on 
both domains, and was also the fastest algorithm out of the three algorithms tested. 
 
Introduction 
 
Many search engines and information retrieval system return a list of documents that 
match a query.  As the number of available documents increases, it has become a difficult 
task to not only search for relevant documents out of the global document pool, but also 
to search through the list of documents returned from a search query.  Results from a 
search may return dozens or hundreds of matches that can be nearly as daunting to search 
as the original document pool.  In addition to the search problem, it is also difficult for a 
user to browse the collection of documents.  Since they are unstructured, the user must 
known the proper search terms in order to find a particular document of interest.  
Otherwise, the user is relegated to scanning through a large number of documents by 
hand. 
 
One approach that has been applied to this problem is automatic clustering.  This 
approach is useful when no a-priori structure has been assigned to the document 
collection, or when it is too expensive to manually categorize the documents.   The 
primary goal of automatic clustering is to determine natural and logical groupings of 
documents without user intervention.  The list of documents is then displayed in terms of 
these groupings in order to ease the task of browsing through the collection. 
 
This technique is typically applied to either a database of documents or to the results of a 
search query.  When used after a search query, users will typically want immediate 
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results.  Consequently, a secondary goal of the clustering method is that it must run 
quickly, typically within seconds.   Additionally, if hundreds or thousands of documents 
are returned, the clustering method must be scalable with respect to the size of the 
document collection. 
 
Prior Work 
 
Hierarchical Agglomerative Clustering 
 
A common technique to cluster documents is the hierarchical agglomerative clustering 
(HAC) approach (Willett, 1988, Voorhees, 1986).  In this approach, each document in the 
collection or list is treated as a cluster and added into a pool of available clusters.  
Consequently, with n documents, there are initially n clusters.  Next, all pairs of clusters 
in the pool are compared and the most similar pair is selected.  Document/cluster 
similarity is typically computed using a metric such as the Cosine, Dice, or Jaccard 
formulas (Rorvig, 1998).  The most similar cluster pair is then merged into a single 
cluster, and added back into the pool of clusters.  The process continues until some 
stopping condition is reached.  Typical stopping conditions include a threshold for the 
number of remaining clusters (e.g., stop if 4 clusters remain), or a threshold for the 
required similarity between clusters (e.g., stop if the two most similar clusters are not 
very similar).    
 
The HAC algorithm has been applied in many different ways.  In all cases, the base 
algorithm is the same.  The differences lie in the method used to compute document 
similarity and the stopping criteria.   While this algorithm produced some of the best 
clusters in our experiments, it suffers in terms of speed and scalability.  The process of 
merging pairs of clusters results in a O(n2) runtime that is often unacceptable in 
moderately sized document collections.  Additionally, the HAC algorithm is suspect to 
creating either elongated clusters or many small clusters.  Elongated clusters are large 
sets of clusters where two documents within the cluster may have nothing in common.  
Conversely, the algorithm may also produce many small clusters with only two or three 
documents within the cluster.  Neither case is particularly desirable. 
 
The HAC algorithm implemented in these experiments used the similarity metric of word 
intersection.  Word-intersection clustering (Word-IC) was defined by Zamir, et. al. in the 
context of snippets from web documents  (Zamir, et. al., 1997).  They actually found that 
Word-IC clustering performed better than the more clustering using the common Cosine 
Group-Average similarity function when operating upon noisy snippets of web 
documents. 
 
In Word-IC, similarity is determined by maximizing cohesion.  Cohesion is simply 
defined as the number of words that intersect when two clusters are unioned together.  
The termination criterion used in our implementation was to stop when the most similar 
pair of clusters had a cohesion less than 2.  That is, stop if one or no words were common 
between clusters. 
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Global Quality Function Clustering 
 
One of the innovations introduced by Zamir et. al. is a global quality function (GQF) that 
is used as a heuristic to guide the clustering process.  In Word-IC using GQF, a heuristic 
function evaluates the goodness of the current set of clusters.  Just as the HAC algorithm, 
the GQF algorithm begins with each document defined as its own cluster.  For each pair 
of clusters, the algorithm then computes the GQF heuristic function if that pair had been 
merged.  The pair of clusters that best maximizes the GQF heuristic function is then 
merged, and placed back into the pool of clusters.  The process repeats until there is no 
increase in the GQF heuristic.  This new process has a well-specified termination 
criterion and that may make it better than HAC. 
 
Key to the algorithm is the definition of the heuristic function, GQF.  The resulting 
clusters depend highly on how this function is defined.  Zamir defined the GQF to 
balance the number of clusters vs. the cohesion of an individual cluster.  In general, we 
want a low number of clusters all with high cohesion.  However, this results in a tradeoff 
since initially all the clusters have very high cohesion, but are all singletons.  In most 
cases, merging clusters dramatically lowers cohesion but only slightly decreases the 
number of clusters.  To address the tradeoff, Zamir defined GQF as: 
 
 

 
In this definition, f is a function that is proportional to the fraction of documents in non-
singleton clusters (clusters with one document).  That is, clusters with one document are 
bad, so we want to maximize the number of documents that are in non-singleton clusters.  
g is a function that increases with the number of non-singleton clusters and attempts to 
minimize the number of overall clusters.  S(c) measures the score of each cluster, where 
the score is based on the cohesion. 
 
More formally, each function is defined as: 
 

 
Zamir derived these formulas via experimentation and found that they returned good 
results.  One detail that was omitted is the definition of dampened cohesion.  In this 
paper, we tried using direct cohesion (# of common terms in the cluster), the square root 
of the direct cohesion, and the log of the direct cohesion.  We found that using the log of 
the cohesion gave the best results, as the cohesion may be a large number that dominates 
the heuristic if not scaled down. 
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Similar to HAC, Word-IC with GQF also runs in O(n2) time.  One advantage to this 
approach is that all documents in a cluster must share common words.  These words can 
be used as a centroid for visualization purposes that describe the contents of the cluster to 
a user browsing the list of clusters. 
 
Term Reduction for HAC and GQF 
 
One major difference between this work and the Zamir study is the terms used from each 
document.  In Zamir’s work, each document was comprised of 40 word snippets from 
web documents.  These snippets were extracted using the MetaCrawler search engine.  In 
this work, we used the full text of the document and reduced the term set through a stop 
list and statistical means.   
 
Rather than use all terms in a document, this work only used terms that are likely to be 
relevant.  First, stop words were removed from each document.  Then, tf-idf values were 
assigned to each term and the terms were sorted by tf-idf value.  Terms with a tf-idf less 
than 0.05 were discarded, since they likely are not relevant.  Terms with a tf-idf equal to 1 
were also discarded, since these terms are unique to only one document.  Consequently, 
they would not contribute to the cohesion score when documents are merged.   
 
After processing each document in this manner, the top 200 terms was retained.  
Document similarity and the clustering process operated only upon the terms retained 
within each document.  These terms should be fairly relevant to the document, but will 
also contain no unique terms and few terms that also appear in other documents. 
 
Inductive TreeCluster 
 
Based upon the HAC and GQF methods, along with prior experience in rule induction 
and how people create their own clusters, we designed a novel algorithm that attempts to 
“induct” clusters in a manner similar to the induction of rules.  The idea is to generate a 
conjunction of conditions (i.e., a rule), typically composed of 1 to 3 terms, that cover a 
number of documents.  For example, the terms may be (“algorithm” AND “genetic” 
AND “agent”) to describe a set of documents about genetic algorithms.  The documents 
that match the rule are turned into a cluster.  The process is repeated to generate a tree of 
clusters. The intent is to quickly generate a shallow tree of clusters that can be 
hierarchically browsed by the user.  A sample of the results is shown in figure 1. 
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Figure 1: Sample TreeCluster. 

Data is organized hierarchically by common keywords.  In a real application, subject lines would be 
displayed instead of document ID numbers. 

 
 
Term Reduction 
 
The success of this algorithm depends upon a good set of terms. For example, if common 
terms are used to generate the conditions, there will likely be a single non-informative 
cluster that is based upon the word “the”.  Consequently, the first step of the algorithm is 
to determine what terms to use for generating the rules.   We wanted to exhaustively 
search the space of rules that can be created using a conjunction of up to three terms.  To 
be tractable, this requires a relatively small number of terms to keep the number of rules 
down.  As a result, we generated a total of 100 terms to use in a global term list to 
generate rules. 
 
The first step that we implemented to determine the term list was identical to the term 
reduction process used for the GQF and HAC algorithms.  For each document, the tf-idf 
values were computed and candidate terms between 0.05 and 1 were retained in a global 
pool of terms.  This phase removes most common terms, but perhaps not all.  The next 
step was to sort this pool of terms by their global document frequency.  This is not the 
total term frequency, but the number of documents that contain each term.  Consequently, 
a term that is in all n documents would be at the top of the list with a document frequency 
value of n.  Starting with the most frequent terms and working down to the least frequent 
terms, a term was added to the final term list if doc-freq(t) < PERCENTMAX and doc-
freq(t) > 2.  Only the first 100 terms were selected. 
 
The latter expression guarantees that a term must appear in at least three documents.  This 
restricts the list to terms that have a chance of creating multi-document clusters.  The 
former expression is used to control the creation of elongated clusters.  In our 
implementation we set PERCENTMAX to 0.25.  This meant that no term was added to 
the global set of terms if it appeared in more than 25% of all documents.   This 
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guarantees that no cluster will be created based upon a single term that contains more 
than 25% of the documents.  This threshold could be varied depending upon the total 
number of clusters desired.  
 
TreeCluster Algorithm 
 
Once the global term list has been determined, the process of creating rules can begin.  
Unlike traditional rule induction algorithms that proceed from the general to the specific, 
this algorithm must proceed from the specific to the general.  The strategy is to build the 
cluster tree from the bottom-up by first finding the most specific clusters possible.  
Grouping the more specific clusters together creates more general clusters until a top 
level of clusters is created. 
  
The most specific set of rules we generate contains three terms.  For example, the rule 
(“algorithm” AND “genetic” AND “agent”) is more specific than (“algorithm” AND 
“genetic”).  If d is the number of terms in our candidate rule and n is the total number of 
terms available, then initially the total number of rules possible is n choose d: 
 

 
For n=100 and d=3, this means that initially there is a total of 161,700 rules to examine.  
Although large, this is a fixed number as long as n and d are kept constant.  We used a 
maximum value of 3 for d, which corresponds to the depth of the generated cluster tree. 
 
After the rules have been generated, each rule is applied to all clusters.  Initially, all 
documents are made into a singleton cluster. The rule that covers the most clusters is 
removed from the set of rules.   Similarly, all clusters that are covered by the rule are 
removed from the set of available clusters and merged into a single new cluster.  This 
new cluster is then added into a new pool of clusters for the next iteration, and its set of 
terms is set to the common terms among all documents in the cluster.  The process 
repeats until no available clusters remain or the best rule covers only a single cluster. 
 
At this point, there is a new set of fairly specific clusters that all share at least three 
common terms.  These clusters will become leaves on the cluster hierarchy.  Any 
singleton clusters that were not covered by rules are added into the new set and the entire 
process of determining a term set and cluster set is repeated.    However, instead of 
generating rules with three terms, we only generate rules with two terms.  That is, the 
value of d is decremented by one.  This creates a set of clusters out of the more specific 
clusters that all share at least two common terms.  The process is repeated one more time 
where d=1.    The final result is the tree depicted in figure 1 where at the top level, all 
documents within a cluster share at least one common term, at the second level all 
documents within the cluster share at least two common terms, etc.   Since the tree was 
built from the bottom-up, higher-level clusters are restricted to terms that are common to 
all subclusters and hence are likely to be relevant keywords and not spurious terms that 
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happen to index a large number of documents.  Similarly, by building the tree from the 
bottom-up, higher level clusters are more likely to group relevant subclusters together 
than if the algorithm proceeded top-down. 
 
The preprocessing phase of determining the term set requires O(tlgt) time to scan and sort 
the terms, where t is the total number of terms in all clusters.  The clustering phase 
actually runs in O(n) time, where n is the number of documents.  However, there is a 
large constant factor of (termsize choose d) that will dominate the runtime. 
 
To reduce the runtime, we found good results starting with d=2 instead of d=3.  This 
dramatically reduces the runtime but does result in a shallow tree.  Nevertheless, we 
surmise this setting will be more popular due to the increase in speed while retaining 
good cluster performance, and in some cases, better generalization.  Additionally, we 
examined clustering with d=3 where only a random percentage of level 3 terms were 
examined.  For example, with a percent of 0.25, only a random selection of 25% of the 
total possible rules was generated.  A lower percentage decreased runtime at the risk of 
missing potential rules.  However, if many good 3-word cluster combinations exist, the 
risk of missing potential rules is small. 
 
Overlapping Clusters 
 
A simple modification to the Tree Cluster algorithm allows the creation of overlapping 
clusters.  In overlapping clusters, a document may exist in multiple clusters.  This is not 
possible in the GQF and HAC algorithms.  It is often desirable, since many topics do 
overlap. 
 
To generate overlapping clusters with the TreeCluster approach, the process remains 
identical except when clusters are merged together.  Rather than apply a rule only to the 
current set of clusters, the rule is also applied to all other documents, even if those 
documents have been removed from the current set after being covered by a previous 
rule.  If these documents match a new rule, they are also added to its cluster.  We 
hypothesize that this will be preferable to the users, and have enabled overlapping 
clusters by default in our algorithm. 
 
Preliminary Experiments 
 
A number of preliminary experiments were conducted to examine cluster speed, 
performance, and scalability.  While these experiments give some indication of the 
performance, additional experiments are necessary for more data on how well the 
clustering algorithms perform under different circumstances. 
 
Experimental Methodology 
 
The evaluation of clustering algorithms is particularly difficult because no standard test 
data and test procedure exists.  Moreover, the notion of what makes a good cluster is 
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subjective.  Consequently, different clustering algorithms may not be easy to compare to 
each other. 
 
In our experiments, we created two test domains: email and web documents.  For each 
domain, three collections of 50 documents were created.  For each collection, the author 
hand-selected 5 clusters with 10 documents per cluster.  Cluster performance was 
measured against the expected clusters.  The experimental results for each domain was 
micro-averaged across the three collections within each domain. 
 
In the email domain, email documents were selected randomly from pre-designated 
folders.  These folders included topics such as “Administrative”, “Mail List”, 
“Presentations”, “Research”, and “Personal”.  In the web domain, web pages were 
selected randomly from search queries.  Searches were made on specific topics within 
computer science and artificial intelligence.  For example, “genetic algorithms”, “cache 
coherency”, “formal design logic”, or “ethernet token ring”.  These searches returned 
web pages guaranteed to contain a common set of keywords.  Ten of these pages were 
randomly selected and saved as an expected cluster.  The process was repeated for both 
the web and email documents until three collections per domain were created, each 
collection with 50 documents.  Unlike Zamir et. al.’s work, the entire text of each 
document was used for clustering instead of a snippet.  On average, the size of a 
document in the mail collection was 520 words while the average size of a web document 
was 640 words.  In contrast, Zamir’s snippets were 40 words in length. 
 
Experimental Results - Speed of Clustering 
 
Without regard to the quality of clusters, the first metric we examined was the time 
required generating the clusters.  Results are shown in figure 2 for the three algorithms. 

Figure 2.  Time to cluster vs. # of documents. 
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The plot depicts runtime in seconds vs. the number of documents averaged across all 
runs.  The runtime only includes the clustering and term reduction phases, not the time 
required for parsing, stop listing, and stemming.  For the TreeCluster algorithm, three 
runs were conducted.  The first run used a maximum tree depth of 2.  The second used a 
maximum tree depth of 3, but generated only 50% of the possible rules, selected at 
random.  For this setting, results may vary depending upon the random number 
selections.  Consequently, three runs were conducted and the results averaged together. 
Finally, the third run used all possible rules that can be generated at a depth of 3. 
 
As expected, the TreeCluster algorithm exhibits linear time growth and requires longer 
time as the tree depth and scope increases.  The O(n2) Word-IC HAC algorithm grew the 
most quickly and required approximately 30 minutes to cluster 100 documents.  The 
Word-IC GQF algorithm appeared fine for a small number of documents, but the O(n2) 
factor causes runtime to increase quickly past 100 documents.  Of these algorithms, 
TreeCluster with a depth of 2 appears to be the only viable algorithm for fast clustering 
results if desired within a matter of seconds. 
 
Experimental Results - Top Level Cluster Performance 
 
The performance of each clustering algorithm was compared to the expected clusters with 
respect to the top-most clusters returned by the algorithm.  All hierarchical structure 
within the clusters was ignored, and only the top-level clusters and all documents indexed 
within that cluster were denoted as belonging to that cluster.  Note that this metric is 
subjective; even though we designated 10 articles to belong to a given cluster, there is 
overlap among documents and other clusters may certainly be legitimate.  Nevertheless, it 
provides one metric to evaluate performance. 
 
The performance metric used to score the clusters was to compute a score for each 
document and then average the scores together.  The score of a source document was 
determined by looking at all pairs of documents for each cluster that the source document 
is in, and dividing the number of true-positive pairs by all possible unique pairs.  A score 
of 1 indicates that documents were clustered with expected documents, while a score of 0 
indicates otherwise. 
 
However, this score does not reflect the number of clusters that were created.  If a 
clustering algorithm put each document into its own cluster and then quit, it would 
receive a perfect score of 1 using this metric.  Ideally, the total number of clusters should 
be combined with the cluster score (as in the GQF function) for a single metric.  
However, we have instead reported the total number of clusters created as a separate 
variable.   
 
Results for the algorithms on the top-level clusters are shown in figure 3. 
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Figure 3.  Top-Level Cluster Performance and # of Clusters Created. 

 
Overall, the web domain appeared more difficult to cluster than the email.  This may be a 
result of overlap among the computer-science topics that were selected.  The Word-IC 
HAC algorithm performed the best on both the email and the web domains.  It also 
resulted in a reasonable number of total clusters (10 and 12).   The Word-IC GQF 
algorithm performed well on the mail domain, but extremely poorly on the web domain.  
The score was lowest (0.4) and the number of clusters high (23 clusters out of 50 
documents).   As previously noted, a slight modification to the selection of terms or the 
GQF function could result in different results. 
 
The results for the TreeCluster algorithm are shown for both a depth of 2 and a depth of 
3.  While the depth 3 algorithm resulted in the fewest overall clusters, the performance 
score is almost identical.  Consequently, the much faster depth 2 version may be 
preferred over the slower depth 3 version.  Compared to Word-IC HAC and GQF, the 
TreeCluster was slightly worse on the mail domain but better than GQF on the web 
domain. 
 
Experimental Results - TreeCluster Performance by Individual Cluster 
 
A final experiment examined the clusters created by the TreeCluster method alone as the 
depth of the tree was increased from 2 to 3.  At depth 3, performance and the number of 
clusters was measured for 33%, 66%, and 100% of all possible rules that can be 
generated at depth=3. 
 
The score metric in this experiment was computed the same way as the previous 
experiment, except scores were tallied in individual clusters within the hierarchy, not 
agglomerated into a single large cluster at the top level. 
 
The results are shown in figure 4.  In counting the number of clusters created, the average 
cluster count is given by tree depth and domain.  For example, in the Mail domain at 
TreeCluster depth=3, 100%, there were 5 clusters at the top level, 9 clusters at the second 
level, and 2 clusters at the third level. 
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Figure 4.  TreeCluster Performance by TreeDepth, Cluster Count. 
 
The leftmost chart indicates that performance using the individual cluster metric 
increases as the tree depth and number of rules examined increases.  This applies to both 
domains although the email domain appears easier than the web domain.  As expected, 
generating clusters using a deeper tree results in better individual clusters.  However, 
there are more cluster groups that are created compared to shallower trees.  The 
TreeCluster at a depth of 2 averaged a total of 10 clusters across the entire Mail 
hierarchy, while the TreeCluster at a depth of 3, 100%, averaged a total of 16 clusters 
across the entire M ail hierarchy.  However, at the topmost level, the depth=3 clusterer 
produced fewer clusters than the depth=2 clusterer, indicating that the tree is weighted 
towards the middle and not towards the top.  This separation will help make the tree 
easier to browse since the total number of top-level categories is not high. 
 
Interestingly enough, the TreeCluster algorithm did not produce very many clusters at 
depth 3, but most clusters at depth 2.  This suggests that after the term selection process, 
most documents/clusters share only 2 terms in common. 
 
 
Future Work 
 
This work has only begun to examine many possibilities in terms of hierarchical 
clustering.  More robust experiments that incorporate different domains need to be 
examined.  Due to time constraints, we were not able to compare the TreeCluster method 
with the suffix tree clustering method proposed by Zamir, et. al.  Additionally, there are 
many parameters that we could vary to examine the resulting performance.  A different 
threshold setting, different ways to select terms, a larger or smaller term set, and other 
factors could dramatically alter performance.  For example, a larger term set will likely 
result in more level-3 clusters with the TreeCluster algorithm.  Usability studies will also 
shed light on what methods cater to user preferences.  Finally, a better scoring 
mechanism and well-defined testbeds need to be created so that clustering algorithms 
may be compared to one another. 
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While much work remains to be done, this work has reiterated that Word-IC HAC gives 
excellent results, but results in an exceptionally slow runtime.  The Word-IC GQF 
method appeared to give good results in one domain, but not in another.  As a result, the 
algorithm may require tweaking to the GQF function in order to avoid extended clusters.   
Finally, the novel TreeCluster algorithm appears to give good results in both domains, 
scales linearly with the input, and generates a shallow tree hierarchy that may be easily 
browsed.  However, is slow to generate clusters for deep trees and does not scale past a 
depth of 3. 
 
Other interesting projects reserved for the future involve merging multiple techniques 
together.  For example, a traditional HAC approach might be applied to generate initial 
clusters, and then applied to the TreeCluster algorithm in an attempt to harness the best 
qualities of both algorithms. 
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